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NATIONAL ADVISORY COMMITI'm FOR AERONAIWICS 

S W I Y  AND ANALYSIS OF EORIZON!I!AL-TAIL COXEiIBUTION 

TO LONGITUDINAL STABILITY OF SWEPT-WING 

AIRPf;ANES  AT LOW SPEEDS 

By Robert H. Neely and Roland F. Griner 

SUMMARY 

Available  wind-tunnel  data on the  low-speed horizontal-tail   contri-  
bution  to  the  static  longitudinal  stEbili ty of high-speed eirplane con- 
figurations  incorporating unswept and sweptback wings are reviewed and 
analyzed. The characterist ics of the  flow  behind wings end  wing-body 
combinetions  axe described and re lated  to   the downwash a t   spec i f i c  tai l  
locetions f o r  unseparated and separated  flow  conditions. The e f fec ts  of 
varietions of t a i l  position,  variations of  wing plan form and a i r f o i l  
section,  trailfng-edge  flaps,  stzll-control  devices, gsd ground Fnter- 
ference on the  eir-flow  characterist ics and t a i l ' cont r ibu t ion  are analyzed 
and demonstrated. The  more favorable t a i l  arrangements are  -hasized 
and their   application  to  specific  configurations is i l lus t ra ted .  The 
analysis of the fectors  affecting  the  horizontal-tail   contribution is, 
for   the most part,  descriptive; however, an ettpmpt has been made t o  
surmnP_rize cer ta in  data by empirical   correlation  or  theoretical  means in  
a form useful f o r  design. 

J 

INTRODU=TION 

The vlalysis o f  the dounwesh behind wings given in  references 1 t o  3 
has provided a good basis from which the hor izontab ta i l   cont r ibu t ion   to  
the  sta-t ic  longitudiml  stabil i ty can be estimated f o r  wing-body com- 
binations  hwing  thick unswept w i n g s  of moderate t o  high aspect  ratlos.  
!This anslysis was concerned laxgely  with  the  concitions of unseparated 
flow and l i t t l e  rolling-up of the  trail ing  vortex  sheet,  which conditions 
are  applicable  to most  of the  useful flight range  for  the type of wwgs 
considered. The corresponding problem for  current high-speed airplane 
configurations is considerably more complicated thas the problem studied 
in  references 1 t o  3. The increased  complexity of the  wing-body-tail 
interference problem is due t o  (1) the  presence of flow  separation over 
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the  wing  for a considerable  portion of the  lift-coefficient  range,  which 
results  from  the  use of sweep and airfoil  sections  having  small  nose  radii, 
(2) the  faster  rolling-up of the  vortex  sheet  resulting  from  the  use  of 
low-aspect-ratfo  wings  (ref. 4), and (3) the  greater  importance of the 
fuselage  because of its  larger  size.  Early  investigations  of  wing-tail 
interference  for  swept-wing  configurations  (refs. 5 and 6 )  showed  that 
the  tail had a powerful  influence  on  the  variation  of  stability  through 
the  lift-coefficient  range  and  that  this  influence  varied  greatly  with 
the  vertical  location of the  tail.  Numerous  subsequent  investigations 
have  been  conducted  at  both  low  and  high  speeds  to  study  the  wing-tail 
interference  problem for various  swept-wing  configurations. In refer- 
ence 7 a nmber of the  important  factors  affecting  the  horizontal-tail 
contribution at low  speeds  were  examined,  and  the  problem of combining 
a tail  with  wing-fuselage  combinations  to  provide  good  longitudinal 
stability  characteristics  was  discussed. 

d 

The  purpose  of  the  present  paper  is  to  provide a more  comprehensive 
review and analysis than was given  in  reference. 7 of  present  knowledge 
concerning  the  low-speed  horizontal-tail  contribution  for  sweptback-wing 
airplanes.  The  characteristics  of  the  flow  behind  sweptback  wings and 
wing-body  con2igurations  are  described and related  to  the  downwash char- 
acteristics of specific  tail  locations  for  unstalled and stalled  flow 
conditions.  The  effects of variations of tail  position,  variations  of 
wing  plan form and airfoil  section,  trailing-edge flaps, stall-control 
devices, and ground interference  on  the  air-flow  characteristics and tail 
contribution  are  analyzed and demonstratea,  The  more  favorable  tail 
arrangements  are  emphasized and their  application  to  specific  config- 
urations  are  illustrated. 

A brief  analysis of the  tail  contribution  to  stability  of  thin 
unswept-wing  configurations of small aspect  ratio  is  included.  Swept- 
forward  or  composite plan forms are  not  considered;  however,  data  for 
such  configurations are given in references 8 to 12. The analysis of 
the  factors  affecting  the horizontal-tail characteristlcs is, to a large 
extent,  descriptive.  It was not  possible  to  present  quantitative  design 
charts  for  estimating  the  tail  contribution,  but  it was possible to corre- 
late a number of significant  parameters  affecting  the  tail  contribution 
Sna to  suggest  rough  design  procedures  based on this  empirical  correlation. 
The  experimental  data on which  the  -lysis In this paper is based  were 
obtained m o s t l y  at  Reynolds  numbers  greater  than 4 X 10 6 

In addition to the  analysis  presented  herein, an index to published 
data on the  air-flow  characteristics and stability  contribution of the 
horizontal  tail  obtained frm tests  of  models  at  Reynolds  numbers  greater 
than 4 X 10 has been  prepared m d  is  presented  in  tebles I and 11. For 
convenience, an index  to  figures is presented  as  table 111. 

6 
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SYMBOLS 

3 

7 
C, 

L 

r 
I 

U 

J a_ 

R 

M 

A 

b 

C 

E 

C' 

d 

% 
. h 

d 

l i f t  coefficient 

mexinumu l i f t  coefficient 

pitching-moment coefficient 

section lift coefficient 

increment of wFng l i f t  coefficient due to deflecting 
trailing-edge  flaps 

l i f t  

wing c i rcu la t  ion 

longitudinal  velocity 

free-stream dynamic pressure 

Reynolds number based on mean aerodynamic  chord of WFng 

Mach  number 

aspect  ratio 

span (wwg span unless  otherwise  noted) measured perpen- 
dicular t o  plane of  symnetry 

local  chord  measured para l le l  t o  air stream 

mean chord measured p a r a l l e l   t o  air stream 

mean aeroaynamic  chord, 

naximum fuselage d i e t e r  

fuselage  diameter a t  c'/4 of tail 

horizontel-%ai1 height normal t o  plane c o n t a h h g  wing-root- 
chord l ine,   posit ive when above plane  through  wing-root- 
chord l i n e  
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2 

m 

S 

A 

it 

X 

Y 

Z 

xO 

X m 

V 

b' 

2' 

horizontal-tail  length  parallel  to  wing-root-chord  line 
measured from the  airplane  center of gravity  to quarter- 
chord  point of tail  mean  aerodynamic  chord  (center of grav- - 
ity assumed at quarter-chord  point of wing mean aerodynamic 
chord  unless  otherwise  noted) 

V 

distance  parallel  to  wing-root-chord  line  measured  from 
three-quarter-chord  point of wing mean aerodynamic  chord 
to  quarter-chord  point of tail  mean  aerodynamic  chord 

area  (wing  area  unless  otherwise  noted) 

angle of sweepback  (from  quarter-chord  line  unless  other- 
wise  noted),  deg 

deflection of trsiling-edge  flaps,  deg 

tager  ratio 

angle of incidence of wing  measured  with  respect to fuselage 
center  line,  positive  when  wing  trailing  edge is down,  deg 

angle of incidence of horizontal  tail  measured  with  respect 
to  plane  containing  wing-root-chord  line,  positive  when 
tail  trailing  edge  is  down,  deg 

longitudinal  coordinate,  positive  rearward 

spanwise  coordinate 

vertical  coordinate,  positive  upward 

longitudinal coordimte measured  from c '/4 

1ongftuCinal  coordinate  measured from wing trail ing edge at 
a given  spanwise  station 

vertical  coordinate  measured from horizontal  plane through 
wing  trailing  edge  at a given  spanwise  station 

downwash velocity  at x,y 

vortex  spacing 

vertical  distance  between  tail  and a 1lne  connecting  vortex 
centers 

W 

. 
9 
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- 
W 

V U 

wake-center location above exterded wing-chord plene 

angle of a t tack  of wing-root-chord l i n e  with respect t o  
horizontal  plane, deg 

9- wing angle o r  at tack  for   increase  in  de-/da, deg 

a2 whg  angle of attack  for  unstable C, change of ta i l -off  
configuration, deg 

E downwzsh vlgle, downflow positive, deg 

downvash angle  for wing having 0' sweepback of qm-ter-chord 
line, deg 

%EX naximum downwash angle, deg 

A€ increxent of  damwesh m g l e  due to  deflecting  trail ing-edge 
fleps, deg 

-d €e effect ive downwash =gley a + - %, deg 

€ B .  do-mwmh  due t o  body alone,  deg 

do-mwash induced by w i n g  and U g e  vortices, deg 

Q sidewash  aJlgle,  deg 

2 k  
9 r a t i o  of loca l  dynaaic pressure (at horizontal ta i l )  t o  free- 

strevn d m i c  pressure 

lift-curve  slope of isolated  horizontal tail,  - 
c pitching-moaent coefficient  contributed by horizontal tat1 
'4t 
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'mi+, rate of change of pitching moment w i t h  horizontal-tail 
incidence, aq,@it 

Y 

CLt angle of attack of horizontal-tail  root chord, CmtlC%t, deg 

v horizontal-tail-volume  coefficient, - - 1 St 
c '  s 

7 t a i l  s t ab i l i t y  parameter, - 1 a% vc aa 

I Subscripts: 

t horizontal tai l  

e eTfective 

LE leading edge 

TI3 t r a i l i n g  edge 

MODEL NOTATION AID TAIL P-ERS 

Model Notation 

For any given model, only the most pertinent  details  have been pre- 
sented  herein. For complete de t a i l s   r e f e r   t o   t he  original reference 
applicgble t o  t'ne given model. 

A three-nmber  notation is used to identify  the plan-form charac- 
t e r i s t i c s  of the wing where the notation  gives, in order,  the sweepback 
of the  qmr'cer-chord  line,  the  aspect  rstio, .znd the  teper  ratio.  As an 
exanple,  the model having  the wing characterist ics hc14 = 50.0°, 
A = 2.88, m d  h = 0.625 is designated as a 5O-2.9-.63 wing or 
50-2.9-. 63 wing-body combination. 

. 
D 

The plan form of the horizontal ta i l - is  also designated by the three- 
number notation. Unless specifically noted as being & tail, the  three- , 

number notation on the f igures   refers   to   the wing. 
P 

i 
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The a i r fo i l   sec t ions  of a l i f t ing surface having a round-nose leading 

edge ere  defined by tine standard. NACA eirfoil   designations.   Airfoil   sec- 

wedge, or hexagonal a i r fo i l   sec t ions .  The designated a i r fo i l   s ec t ions  
re fer  t o  sec t ions   para l le l   to   the   f ree  streern unless otnerwise  noted. 
For yar t icu lar   de ta i l s  of wings having twist  and camber, reference t o  the 
original  paper should be made. 

'i t ions having  sharp  leading edges a re   r e f e r r ed   t o  as ei ther   c i rculm-arc,  

The leading-edge  devices  (flap, slat, etc. ) are referred to by spans 
in   f rac t ions  of wing semispan znd the  deflection  angles are omitted. The 
outboard end of the leading-edge  device is located  belxeen 97 percent 
and 100 percent of the  semispan. 

The designated spzn of the  trail ing-edge  f laps is the location of 
the outboard end  of the  f lap.  Most of the wing-body configurations  with 
trailing-edge  flzps have the f l a p  inbomd ends located et or c l o s e   t o  
the  intersect ion of the  wing t r a i l i n g  edge with "the body. The w i n g  con- 
figurations  without  bodies b2ve the ir?board end of the trailing-edge 
aevice  located a t  the plene 03 s-etry. 

Deflections of some of these  devices  ere measured in a plane  paral le l  
t o  the air strean, whereas others are measured i n  a plane  perpendicular 
t o  a constant  percent-chord  line on the swept wing panel. When such 
de ta i l s  are needed, reference  to the original  papers  should be made. 

s 

It should  be  noted tht the extended spl i t  f l a p  i s  a split f lap  with 
the  hinge  loczted a t  tine w i n g  t r a i l i n g  edge. 

T a i l  A* F l o w  and Stabi l i ty  Parameters 

Effective  vdues of domwash angle and dynamic pressure.- The elfec- 
t i v e  domwash angle E, and the dynamic-pressure r a t i o  ere calculated 
fra! the experinental pitching-moment data. For configurations where only 
two horizontal-tail  icctdences and a tail-off  configuration were inves- 
tigated, the Lift curve of the t a i l  was assumed t o  be l i nea r  and the 
erfective-flow  permeters were calculated as follows: 

= a + it - aL 

where 

r 
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where 

f o r  2, given  configmation with o r  without 

b 

flaps, and 

for  the  condition when t he  t a i l  Cs located  out or" the wake and away 
from the wing-chord glane of the flap-off  configuration et a = Oo. 

When date with enough t a i l  incidences were available,  the  value 
of ce w&s determined by equation (1) by using the  condition  that 

= Oo at the intersections of the tail-on a.nd teil-off pitching-moment 
curves. 

T a i l  stability  para9eter.- The combined effects of downwash angle 
and aynr-?;ic pressure on the stabilizfng  contribution of the  horizontal 
t a i l  is defined by the t r e l  s tab i l i ty   parmeter  T (see  ref. 13): 

which, Cor E l inear  l if t-curve slope, i s  

A negative  value of T indicates that t'ne t a i l  is contributing  stabil i ty.  
Tne velxes of T presented were colqputed by equation (3) by assuming s. 
l inear  t a i l  l i f t - c u v e  slooe. 

V 

f 
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OUimi AND SCOPE OF ANALYSIS 

i 
The general  objectives of the -lysis contained i n  this report   are 

t o  provide an understending 02 the  factors  effecting the t a i l  contribution 
to   s t ab i l i t y ,  t o  evaluate  existing methods &nd provide new information 
for  sredicting  the t a i l  contribution,  to  demonstrate the effects  of veri- 
o w  configuration  parameters on the t a i l  contribution, and to   indicate  
how t i e   t a i l   m y  be combined with wing-body conbinations to provide 
desirable  overall   stabil i ty  cheracterist ics.  These points are discussed 
under three  subject  headings which are  the  basic air-flow chnac te r i s t i c s  
behrzld. wings, the  analysis of the ste;bility  contribution of specific 
horizontal tails, znd the   t a i l   des ign   providhg  des i rab le   overa l l   s tab i l i ty  
of the wing-body-tail conf iguretion. 

In order t o  provi-de a basis fran which tine analysis of: the tai l  
contribution can iroceed,  the air-flow characterist ics behind wings and 
wing-body combinations are  discussed in sone detail. The vor t ic i ty  
distributions on the wing and i n   t he  wabe are f irst  described, and the 
effects  of these  distributions OE the magnitude of the downwash a x l e  
txnd the  position 05 the downwash f i e l d  w i t h  respect t o  the wing, which 

The accuracy of certain  idealized  representations of' the  vortex  system in 
depictir-g  the  flow  field is determined by comparisons of calcula=ted  and 
experbectal  downwash mgles.  The flow  behind both wfngs and wing-body 
combinations ere reviewed and aoalyzed. The flows in   the  d e  of wings 
me  discussed as t o  whether the f low over the w5ng i s  unseparated o r  
separated  because of the  lwge  differences in the flow obtalned  for  these 
two conditions. Tne flow  characteristics f o r  plab-  swept- asd unswept- 
wing configurations  are  discussed ai; some length; in  addition, the effects  
of various  arrangements of stell-control  devices end trailing-edge  flaps 
on the flow are  considered  briefly. 

- 
v ere of  prime  importance i n  determining  the t a i l  contribution,  are shown. 

The analysis of the  longitudinal-stability  contribution of the ta i l  
i s  begun with sone general  considerations of the l i f t  produced by a teil 
surface when placed in a given flow f ie ld .  Next, the fundarnentel aspects 
of t a i l  location m-d geometry affecting  the  variation of t he   s t ab i l i t y  
contribution w i t h  angle of a t tack are brought out by analyzing the  non- 
uniform  changes of downwash angle a t   t h e  tsil as it moves  down w i t h  angle 
of a t tack through the flow f i e l d  of sweptback-wing-body cmbhat ions .  
The points  coccerning the t a i l  contribution which are  emphasized m e  the 
direction of the chazlges  of the t a i l  contribution,  the  angles of attack 
where these changes  occur, and the nagzitude of the ta i l  contrlbution, 
tb-e prinary extphasis being on the  stelled-flow regime. Experjmental  date. 
on the aerodynanic factors  entering  into  the te i l  contribution a t  both 

number of plain-wlhg  configurations. A procedure f o r  estha.t-ing the  t a i l  
contribution which is based, in   pzr t ,  on the experimental smmaries is  

1 low md high  angles of attack  ere  collected m-d correlated f o r  a large 

t - 



10 - NACA RM ~ 5 5 ~ 2 3 ~  

outlined. The remainder of t l e  anzlysis of tine t a i l  contrLbution is 
devoted t o  a demonstration of t h e   q u t i t a t i v e   e f f e c t s  of various  config- 
uretion a d  t es t   var i sb les  on the  tail.  contributiors- of selected  coeig-  
urations. These effects are explained  briefly  in term of the basic flow 
characteristics. 

%Then t ? e  design  of a horizontal t a i l  t o  provide  desirable  overell 
corrfigurstion  stability is considered,  the  general  classes of tail-off 
pitching-rnozent  curves and the differences  in  the  required t a i l  contri- 
bution  zre  discussed by using  the  analysis  of  reference 7. The t a i l  
locations and volmes which tend t o  give  desirable  stzbility  character- 
istics  are  then  denonstrated f o r  c o ~ i g u r a t i o n s  with  various  types of 
tsil-off  pitching-mmat  curves. 

AIR-FLOW CHARAC!ERISTICS 

Plain-Wing Configurations Witnout Flow Separation 

The dow~wash  behind e wing depends on the magnitude .znd dis t r ibut ion 
of vort ic i ty  on the wing and i n  the  trailing  vortex  sheet. The d i s t r i -  
bution  of  vorticity  in  the trailing vortex  sheet changes with  distance 
fron  the wing because of the  rolling-up and dis tor t ion of the  sheet. 
ne se  changes i n  the configuration of the  vortex  sheet  generally  decrease 
the magnitude  of the downwash over  the ta i l  region end cause the downwash 
variation in  the  ver t ical   d i rect ion  to  become unsymnetrical  about  the 
vortex-sheet  center  line. As shown h reference 4, the  same degree of 
rolling-up of the  vortex  sheet is defined by eq-ual values of the param- 

eter - - cL for  whgs  with sh i la r   c i rcu la t ioc   d i s t r ibu t ions .  

v 

b A  

In  the  application of the  Biot-Savart  law t o  the  calculation of the 
downvash  behint! wings (ref 6 .  1, 2, 4, &.nd 14 t o  18), the  vortex  sheet is 
generally assuned t o  be f la t  w i t h  no rolling-up  eltnough  the  distortion 
i s  accounteci for  by displacing  tne  sheet by a constant amount. Inesmuch 
es rolling-up may be of some consequence fo r  the configurations m-der 
consideration, it is desirable to :mow  how nuch rolling-up has occurred 
and i t s  possible  effect on the downwzsh calculation. For convenience in  
generalizing  results on downwash and rolling-up  of  the  trailing  vortex 
sheet behi-n-d unstalled surfaces  suitable for high-speed f l igh t ,  wings 
are  classified es wings havipx  unsvept t r a i l fng  edges ani! nearly  ell ip- 
t i c a l  loadings (low aspect  ratio) and those  heving sweptback trailLng 
edges and loedings which are   newly unifom or reduced a t  the  center  of 
the wing. 

P 
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Wings with -msweDt t ra i l inR edges and Low aspect ratio.-  For  wings 
with  unsvept t r a i l i o g  edges md low aspect  ratio, it 2s assumed tht the 

bution. The shape of t'le  vortex  sheet as it moves downstrean of the 
t r a i l i r g  edge is  represented  schematically  in  figure  l(a). Tne rollinlg- 
up phenomene have  been discussed  considerably by prevlous investigators 
(see,  for  exaple,  ref. 4) - ~n reference 4 Epproxhate formulas for  
calculzticg  the  coordinates of the partially  rolled-us  vortex  cores  me 
suggested. These formulas a re  a modification of Kadenrs resul ts   for   the 
rolling-up of 3 vortex  sheet of s e n i - h f i n i t e  width. A fev checks w i t i  
experiaental data indicate tht the formulas of  reference 4 pre6ict   the 
paths of the  t ipvortex  cores  ressonably  well  Tor e l l i p t i c a l  wings. 
Although these checks w e  not  conclusive,  the inward movement of t h e   t i p  
vortices, which is an indicstion of the  degree of rolling-up of the 

' trail ing  vortex  sheet,  is considered t o  be  represented  adeqwtely by the 
resul ts  of reference 4 for  wings w i t h  unswept t r a i l i a g  edges and nearly 
ell iptical   lo&dings.  

t load  aistribution does 20% depart  very far from a e l l i p t i c a l  l o d  distri- 

For low l i f t   coeff ic ients   the  representet ion of the  vortex systen 
&s 6, f l a t   shee t  without  any  rollir-g up is considered a good approximetion 
f o r  calculating downmsh mgles  a t  usuzl tai l  locations. The excellent 

u-stalled  low-aspect-ratio sweptback wings eon reTerence 18 is shown 
in  f igure 2. Tne aokllwash was calculated by dis t r ibut ing an el l i$tLcal  
spmwise  loading a t  four chordwise stations.  The dis t r ibut ion of load i n  
a chordwise  d-ection  does no t   ~gpea r  to heve a n  h p o r t m t   e f f e c t  OIL 
downwash, hovever,  except for   sosi t ions  new the wing. Fallmer i n  
reference 19 indicates  that  concentration of  the load a t   t h e  0.25 chord 
l i n e  on a 60° cielta wing w i l l  r esu l t  i n  an underestimation of e/CL 
equal t o  7 perceot et 0 . 4 3 ~  behind t h e   t r a i l h g  edge and 3 percent 
a t  1.3Oc. 

i agreenent between experimental and calculated domwzsh For several 

The limits of appl5cabilFty of the  concept 02 the  nonrolled-up 
sheet f o r  calculsting  the magnitude an6 position of  the downwzsh behir-d 
unstalled wings me  not  well  defhed.  Results of calculations  given  in 
reference 2 ard of addition21  calculations  based on the  positions of the 
p.zxtially  rolled-us  vortex of refereme 20 indicate  that   the  influeme 
of the  distortion uld rolling-up of the  vortex  sheet on t'ce downwash 
angle  mar  the  plane of symnetry  nay  be neglected  for  values o f  

- - < 0.13 for  wfngs w i t h  approximately e l l i p t i c a l  lozdillgs. Ln xm (=L 
b A  

these  calculations  the  entire  sheet w a s  d i spkced  downward an mount 
e q u d   t o   t h e  displacement a t   t h e  glm-e of symnetry. If t'oe value of 
X 
" of 0.13 i s  near  the upper linit for neglecting  the  effects of 

1 b A  
dis tor t ion and rolling-up,  then  errors Till a r i se  io the p r a c t i c a l   r a g e  
of l i f t   coe f r i c i en t s  when the  flat-sheet  representation  with no rolling-up 

% 
- 
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i s  used for  calculating  the downmsk?. Sepsration may occw, however, 
before  the  limiting l i f t  coefficient i s  reacl?ed, i n  which case  the rolling- 
us phenomena and dovnwash characterist ics axe considembly changed 8 s  will 
be  discussed  later. 

Sdeptbeck wings with sweptback trzilLng edges .- For the sweFtback 
wing with 2. sweptback t r a i l i ng  edge, the  lozd  distribution  over  the  center 
pzr t  of the wing nay be  r-eazly uniI'orm o r ,   i n  rzost ceses, shows a reduc- 
t i on  i n  loading a t  the  plane of symnetry. A s  a consequence the downwash 
decresses as the plane of syrrrietry is approached. This decreased down- 
wash and the   in i t ia l   d i spos i t ion  of the  vortex  sheet  gives  rise  to a 
trailing  vortex  sheet es i l lus t ra ted   in   f igure   I (b) .  The mexiam dis- 
placement  of the  vortex  sheet f r a  the  horizontal is obtahed outboard 
of the plane of symmetry for  locations  near  the  .dng  but is obtaFned 
near  the  plane of syCl3letry far downstre&= of  the wing (see rei'. 21). 
Some insight  into the rolling-up  process m y  be gair,ed by studying  the 
la teralmvement  of t h e   t i p  vortex. The tip-vortex  positions  behind 
t h e e  wings with sweptback t r a i l i ng  edges (ref s. 22, 14, and 21) are 
presented i n  figure 3. The l a t e r a l  movenent of the  t ip  vortices  with 
increasing downstream distance is negligible, and the m i n i n m  vortex 
spacings measured are xuch wes te r  t i n  the  spacings  calculated  for a 
f d l y  rolled--*  vortex  sheet  (approximately 0.85b/2). These resul ts  Mi- * 
cate th&t there is l i t t l e  rolling-up of the vortex  sheet  for  the  condi- 

t ions   in   f igure  3 which cover a range of  - - cL l ike ly  t o  be of interest 
b 4  

for   the unseparated-flow  case. It appears,   then,  that   the  assaption of 
a f l a t   shee t  w i t h  no rolling-up is Justified for the calculation of down- 
wash for a range of conditions a t  least as large as tha t   for  wings with 
unswept t r a i l i ng  edges and nearly  ell ipticsl   loadings.  The rollfng-ug 
process for the types of wings Fn f igwe 3 appezrs to be different  than 
tha t   for  wings described i n   t h e  previous  section.  This f ac t  is shown by 
the smller inward movemect of the  t ip   vort ices  of the  present w i n g s  
compmed w i t h  the  mvenent  obtained on straight wings (fig. 3(a) ) and the 
movement calculzted by the method of reference 21 (which is essentially 
the method of ref .  4) (fig. 3 (c) ) . 

The do-imwash behind an unstalled 404.0-.63 wing as  calculated in  
reference 14 is cortqared w i t h  experimental resu l t s  in figure 4. The 
calc-dated  vslues of do-mash  in the vortex sheet are law by about 
20 percent st the  plzne of sp-ekry,  but  the  discrepvlcy i s  less at ~ o s i -  
t ions  my from the  plane of  syxmetry end. the  vortex  sheet. The downwash 
in  the  vortex  sheet i s  very  sensitive to the shape of the  loading  curve. 
Neglecting the  effects of negetive  vorticity a t  the  plane of symnetry 
which is indicated by tke load distributioD  reduces the discrepancy between 
experizzer-tzl end calculated downwash (see  fig. 4(b)) .  Differences between 
experimental am2 calculated downwash similar t o   t h a t  j u s t  described k?ave 
been observed fo r  a 30-4.5-1.0 w i n g  i n  reference 15 &nd a 43-3.5-.50 wing 

r - 
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. ( w i t h  nose flap  deflected)  in  reference 23. In   the  latter reference 
exgerimental load distributions were used. 

4 
Because air  i n   t h e  boundary layer  collects  near  the wing t i p s  and 

beceuse of the  closer  proximity of the outboard wing sect ions  to   the 
survey  plane, the maximm loss of dynamic pressure i n  t i e  wake is  obtained 
behiEd the outboard sections. (See f ig .  5.) In  f igure 5 and a number 
of subsequent figures the  outline of' the w i n g  is projected i n  the streem 
direction onto the survey  plane which is  perpendicular t o   t h e  main air 
strean. A s  shown in  f igure 5,  the wdse-center location can  be predicted 
accurztely by using  the  calculated downwash angles; however, an empirical 
re la t ion   for   es tha t ing   the  wake-center loc&kion which is  accurate enough 
for  most cases has been dertved f r o m  available  survey data. The relat ion 
for  a spanwise s ta t ion of approximately 0.23b/2 is 

fo r  wings with h = 0.4 t o  1.0 and A = 30' t o  60'. For more highly 
tapered wings a value of 2.0 lnstead of 1.5 in equation (5) gfves  better 

'c results. Eqmtion  (5)  Epplies  best  for tai l  lengths from 22/b = 0.9 
to 1.5. 

For a given  angle of attack the downwash behind the inboard per t  of 
a wlng decreases with increasing sweepback because of the accomparkying 
decrease and outward shift of the  1is"t. Because of the changes in down- 
wash angle,  the wake displacement r e l a t ive   t o  e horizontal   l ine through 
the t r a i l i ng  edge a l s o  decreases  with  increasing sweepback. Sane experi- 
mental data demonstrating th i s   e f fec t  are shown in figure 6 .  I n  this 
figure  the  ordinate is the angle  through which the wake is  displaced f'rom 
a horizontal  line  per unit change of wimg angle of attack. The change in 
wake displecement i s  considerable for h = 1.0, but it appears  that the 
change decreases  with a decrease i n  h. 

Wing-body combi-?ztions. - Wcen e fuselage is added t o  a whg, the  
flow f ie ld  behind the wtng is  altered because the  cfrculatfon  distribution 
over the wing is  changed &d 2n additional  flow componenb is  introduced 
because of the flaw about  the  fuselzge. 

In  order t o  demonstrate the phenomena involved i n  wing-body downmsh, 
%he  components of the downwesh mgle of a combination consisting of a 
5O-2.9-. 63 wing  mounted on an infinite  circular  cylinder are shown i n  
figure 7 for  a vertical   location of z = 0 md a lo-ogitudinal  location 
of x = m. Tce t o t a l  downwesh is  considerea t o  be made up of the  down- 
wash due to   the  wing i n  the presence  of the body, the damwash due t o  
the isolated body, and the downwash due t o  mutual 3hterference betweeo 

* 
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the flow f ie lds  of the wing  and the body. In  calculating the downmsh 
the method used in  reference 24 for  representing the vortex system was 
followed. The vortex  sheet was assumed t o  be f l a t  and i n   l i n e  wi th  the  
body. The downwesh due t o  the  wing was obtained by using the summation 
of the  theoretical  wing-alone loading md EL body-induced loeding  calcu- 
lated in  reference 25 for  a wing-body combimtion similar to  the  present 
one. This calculated  loading is shown i n  figure 8. The downmsh  due t o  
the  isolated body was obtained from the increments of velocity  resulting 
from the crossflow around an infinite  circular  cylinder et a velocity 
of Ua. The interference  flow which represents the reduction of the 
body crossflow due t o  t'ne wing downwash was obtained by determining  the 
downwash induced by vortices which are  situated  within  the  fuselage bound- 
ary and .=re images of the vortices shed from the wing. 

As shown in  figure 7, the downwash due t o  the exposed wing vortices 
is  approximtely  equal to the dowomsh of the  w i n g  done   fo r   t he  example 
given,  but this equality i s  00% necessarily true. The interference down- 
wash a t  the side of the body i s  given  exactly by the product  of  the wfng 
downwash and the nondimensional velocfty increment due to  the  crossflow 

2 
around the body 162\ , and for   s ta t ioos away frm the  side of the body 

\ J  i 
the  downwash is given  approximately by this  product. The hportance of 
small changes i n  w i n g  loadfng close  to  the body  on the flow is  obvious 
and these changes are  of greater  hgortance  than  those  for the wing alone. 
In  the  region  close  to  the body,  however, the  greatest   difficulty is 
encountered in  predicting  the body-induced loading  (ref.  26).  Calculations 
made for  a plene a t  the top of t h e  body show that the downwash i s  not  very 
sensi t ive  to   the  exact  shape of the spanwise load  distribution end that 
the predominant change between wing-alone md wing-body downwash is the 
large downwash angle ebove the body result ing from the tendency of the 
flow t o  follow  the body. 

Values of downwash calculated by the method described in  the  preceding 
paragraph are compered in   f igure 9 w i t h  the experimental  values of down- 
wash for  a 5O-2.9-.63  wing-body combination obtained from the original 
data of reference 2'7. A cr-de  correction  for the effect  of afterbody con- 
traction  (rig.  8) on the flow field was made by displacing  the  flow  field 
calculated f o r  the combination w i t h  the infb i te   c i rcu lar   cy l inder  an 
&mount equal to  the  displecenent of the axial-flow  streamlines  about  the 
body. T..e displacement of the  axial-flow streamlines result ing from af te r -  
body contraction i s  given  approximately by the  relation from reference 28: 
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Although tne downwash variation  with spenwise distance  are  predicted 
quzli tetively by the theory,  the Egreement between theoretical  and e q e r -  

obtained f o r  the wi-ng-alone configuration of figure 4. The calculated 
downmsh i s  too low, par t icu lar ly   a t  spanwise stations  near  the body. 
Inaccuracies  result wheE using the  present method for  calculating  the 
downvash of wing-body combhations inesmuch as this nethod  neglects  the 
effects  of the bound vortex and the movement between the  vortex  sheet 
ad body e& does not offer  a ratioml  solution  for  tne  f low  near  the 
end of the  fuselage. Anot'ner source of error  may be in the  assmed span 
loadir-g.  Besides the  factors   re la t ing  to   the method of calculatfon,  there 
are  other  factors  affecting  the compmison in   f igure  9 which are  related 
to  the  conditions of the  experinental  configurations. The value of the 
downwzsh gradient is changing rapidly  in  the  region or" the body center 
l ine  so that the  experimental  accuracy is not so good as in other  regions 
of the f low f ie ld .  Viscoizs f low phenomena which are not  considered i n  
the  calculation  affect  the flow f ie ld .  Measurements reported in  refer-  
ence 29 indicete that the  large upwash angles as obtained  near  infinite 
cylicders are not  obtained in the  regions of high ra tes  of contraction 

sidered  conclusive in evalmting  the method of calculation f o r  bodies 
with  nearly  constant  cross  sections where the  theory i s  most applicrtble. 
Experimental  date fo r  such configwetions axe needed. In addition,  an 
evalwtion of the  effects  of the bound vortex on downwash, possibly by 
the  aethod  suggested in reference 30, is desirable. 

a imental  velues of downwash is generally poor and is  not so good as was 

I of a finite-length body. The comparison shown in figure 9 is not con- 

c 

PleFn-Wing CorSigurations V i t h  Flow Sepwation 

The flow behind whgs with segarated  flow  differs  significantly from 
the flow behind wings with  unseparated  flow.  Although some charzcterist ics 
of the flow are   the same behind  various  stalled wings, differences i n  the 
flows do ex is t  and are  demonstrated by discussing the f low characteristfcs 
f o r  several wings which differ  considerably ia plan form. I n  this dis- 
cussion  cocsiderEble emphasis is placed on the  variation of the maximum 
downwzsh angle w i t h  angle of attack  behhd  the  inboard wing sections and 
the  vertical   posit ion of the mexi?num down-ash mgle. These parameters 
are  useful end convenient in  describing  the state of the flow and are of 
great importance in  determining  the domwash variation  obtained  at  the 
t a i l .  

Sweptbzck-wing configurations.- Wing flow  characterist ics  lor  several  
stallecl sweptback-wing configurations  are  ibdiceted by spm loading and 
ta i l -off  pitching-moment curves in figure 10. Tne variations of the m i -  
mum downwash angle w i t h  angle of at tack  for a station  within the span of 

venientnethod of indicating  chmges  in  the f low field.  Detailed  flow 
- a t a i l  we also shown. The maxinm downwash angle is used here as a con- 
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characterist ics behind the wings are  shown by vector  plots and dynamic- 
pressure  contours  in  figures 11 t o  13. Tine varietions  of downw-esh w i t h  
vertical   distance from the wing t r a i l i ng  edge are  given  in  f igure 14. 

A s  a result of the inward progression of separation which begins a t  
the wing trips, the  spmwise  locations of the  large changes in loadhg  
(fig.  10) &nd, consequently,  the  locations of the regions of large  vortic- 
i t y   i n  the wake nove inhard  vith  increasing  angle of attack.  In  addi- 
t ion,  the circuletion  about  the wing increases w i t h  angle of a t tack at  a 
greater r a t e  sfter separation  occurs,  as  indicated by the increased l i f t -  
curve  slope  of  sections  near  the  center of the wing i n  references 31 
t o  33 for  low-aspect-retio wings and in references 34 and 35 f o r  high- 
aspect-ratio wings. Because of these two effects,  the maxFmum downwash 
angle  increases  vith  angle of at tack a t  a greater rate after separation 
occurs. The value of d h l d a ,  does  not  increase  significantly, however, 
unti l   the  regions of lmge   vor t ic i ty  have moved  some distance  inboard of 
the tips,  as  indicated by the load distribu%ion in  figure l O ( a )  and by 
the pitching-moment cmves  in figures l O ( b )  and LO (c) . 

Tne detsiled flow chzracterist ics behind a 60' del ta  (52.4-2.3-0) wing - 
obtained 'f'ron reference  36.~~1-e shown Fn figure 11. The flow  behind other 

sepsretion-vortex  characteristic of  sweptbeck wings w i t h  small nose radii 
forms along the leading edge and trails off  the wing  inboarrd of the wing 
t i p .  This vortex is identified by a region of large  flow  angles,  rapid 
changes i n  flow angles, and redizced dynamic pressure. The vortex  leaves 
the wing above the t r a i l i ng  edge and is inclined  sl ightly downward w i t h  
respect. to a horizontal  plane. Wfth increasing  angle of attack  (see 
f ig s  . l l (a )  and l l ( b )  ) , the vortex moves i n w a r d  and enlerges, and the 
center  appears t o  move s l igh t ly  upward relsttive to the wing t r a i l i n g  edge. 
Most of the vort ic i ty  shed  from the wing appears to be  concentrated in  
t h i s  separation  vortex even during the  early stages of developent. Note 
data for a = ll.Oo in  f igure   U(a)  where a d i s t inc t  viscous wake exis ts  
behind the inboard stations  but no abrupt change in sidewash occurs  while 
going  through the wake. The spm loading  for this configuration 
(f ig .  l O ( a )  ) also  indicates t h a t  l i t t l e  vor t ic i ty  would be  shed  behlnd 
the inboerd  sections. There is probably e small range of angle of a t tack 
where vor t ic i ty  is contained i n  both the separation  vortices and a con- 
tinuous  vortex  sheet. This result was obtained fo r  wings with nose radii 
larger  than t'nat of the present wing in  reference 36. The positions  of 
the  separation  vortices appem to be s l ight ly  outbozrd  of the positions 
of a fully rolled-up  pair of vortices e s  calculated from experimental 
load  distributions  of  reference 32. The maximum downwash a t  a ssanwise 
s ta t ion  of 0.27b/2 is  obtained d o n g  e l i n e  connecting the vortex  centers 
as shown in   f igure 14 (a) .  

' wings of the same plan  fom i s  described in references 37 and 38. A B 

The existence of regions of redllced dynamic pressure and the diffu- 
sion of these  regions  with  increasing downstreem distance  (see  figs. l l ( b ) ,  

a 
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l l ( c ) ,  and l l ( d )  ) indicate  the  existence of an  inflow  similar  to  that 
described in  reference 2 fo r  two-dimensional wakes. For the conditions 

sional. The dis t r ibut ion of downwash due t o  inflow i n  an xz plane  passing 
through the  region of low dynaaic  pressure w i l l  be similar to that obtained 
for  two-dimensional wakes; moreover, a contribution  to  the downwash i s  
obtained i n  xz phnes  outs ide the regions of low dynamic pressure  because 
of the downwash componests of the  inflow. The contribution of the  inflow 
to   t he  downwzsh has not been evaluated; however, it can be said that i ts  
megnitude w i l l  diminish  with  b-creasing downstream dis tmce.  

I i n  f igure 11, ho-vever, the  inflow phenonenoc is essent ia l ly  three dben-  

By using  the  experlnental load dist r ibut ion of reference 32 the  
downwzsh behind the 60' deltz (52.4-2.3-0) wing was calculated on the 
assumption that the  vort ic i ty  was concentrated in a single swest  horseshoe 
vortex. The ca lcu la ted   n r ia t ions  of % with  angle of a t tack  and 
variations of downwash with  vertical   distance are compared v i th   t he  
experiaental  variations i n  figure 15. As shown in f igure 15 (a) the  cal-  
culated  values of E- md d c d d a  a t  high angles of a t tack   a re  
lower than the  experimental  values. The agreement  between experhente l  
end calculated results is  f a i r l y  good i f  t he  displacement of  the experi- 
mental downmsh curve as indicated by the  extrapolated  value of % 
at  a = 0 is taken i n t o  account. The experimental and calculated  vari- 
ations of downvash w i t h  ver t ica l   d i s tance   d i f fe r  by a constant emount 
a t  2y/b = 0 but by vzrying ua0Un.i;~ a t  2y/b = 0.3 (see  fig.  15(b) 1. 

" 

The vortex system behhd the 45-3.5-.50  wing of figure lO(b) appears 
t o  be less  concentrated  than that fo r   t he  60° delta (52.4-2.3-0) wing just  
described even though the flows  over  the wings me basiczlly sinilarr. 
As shown Fn reference 23, the  flow  behind  the 45-3.5-.50  wing appears 
as a vortex  sheet  in  the early stages  of  sepmation  but  large  part of 
tine vo r t i c i ty  is located  within the outer  one-third of the semispan. 
With increasing  angle of e t tack,   the   vort ic i ty  becomes  more concentrated. 
The flow angles at the higher  angles of at tack  are  more i r regular  than 
those  obtained behind the 60° delta wing  (compme f igs .  11 and 12), md 
there -e two distinct  regions of low dymmic pressure behind the  
45-3.5-.50 wing. For t h i s  wing a t ip   vor tex  and a seperation  vortex we 
both  present. A plot  of the  integral  or" the   c i rcu la t ion   in  the wake as 
a function of spanwise distance in figure 16 indicates t h t  the t i p  
vortex is  re la t ive  weak.  The calculated  position of a conpletely  rolled- 
up vortex is  outboard of the posit ion of the  separetion  vortex as shown 
in   f i gu re  12. The flow  behina the 45-3.5-. 50 wing and the 50-2.9-.63 wing 
of reference 27 demonstrates  very w e l l  the  general  effect of t i p   s t a l l i n g  
on t'le position of the  maxhm downwash angle. As shown i n  figures 14(b) 
and l k (c ) ,  the Position of the maximum downmsh angle tends t o  move down- 
w a r d  with  angle of a t teck  ir accord w i t h  t he  wake-center movenent mtil 
the wing stalls (a, = 16.3O for   the 50-2.9-.63 w i n g ) .  As t he  wing stalls, 
the  posit ion of emex moves  upwerd but this change occurs  before de-dcc 

* 
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increases. The maximum downwzsh angle is  generally  obtained  along a l i ne  
connecting the  separation-vortex  centers at the  higher &ngles of attack 
as in  the  case of  tne 60' del ta  wing. 

Y 

Vdues of calculated for the 45-3.5-.53 wing  by assuming e. 
single swept horseshoe  vortex whose strength and span were determined 
fron the experiqental  span  loading  are  considerably lower than the  experi- 
mente1 values. Note that  the  calculated s p a s  of the vortex were larger 
t h m  the  neasured spans of the separation  vortex  in which most of the 
vort ic i ty  is concentrated. Downwash which was calculated in reference 23 
by use of the vorticity  distribution  indicated by the experimental  load 
distribution  also  indicates rather poor  agreement with experimental results 
i n   r e g u d   t o  both  (fig. 17) and the downwash angles  outside  the 
region of E-. For the  type of flow  observe6 on the 45-3.5-.50 wing, 
the  disagreement between resul ts  of experhent and calculations based on 
the two extreme methods of vortex  representation i s  not surprising. 

For wings without  the  separation  vortex on the surface, the change 
i n  load distribukion due t o   t i p  stalllng w i l l  s t i l l  cause  strong  vortices c 

behind the wing inboard of t h e   t i p  as shown by data for  a 45O del ta  wing 
in   f igure 8 of reference 39. These vortices  appear t o  be less   d i s t inc t  
end the flow is  less  steady thm for  a wlng with  separation  vortices. 
The origin of these  vortices  appears  to be above the   t ra i l ing  edge just 
as for the separation  vortices. 

i? 

The f l o w  behind a sweptback-wing-body combination of high asgect 
r a t i o  -without the  separation-vortex  flow is  i l lus t ra ted  in  figure 13 f o r  
2 condition of high  angle of attack.  mese data were obtained from refer- 
ence 40. A well-defined vortex sheet is indicated behina Yne inboard 
par t  of the  whg even  though the flow over the outboerd par t  of the  whg 
is separated as sho-rn in figure  1O(c). This resu l t  is In contrast   to  
the resx l t s  for the t w o  k-lngs discussed  previously where vor t ic i ty  behind 
the  inboard wing sections was not  discernible, m d  it is at t r ibuted t o  
the large  aspect  ratio of the wing of f igure 13. The position of E- 

as shown i n  figure 14(d) moves dowmard with angle of attack approximately 
i n  accordance with the wake movemeot even a f t e r  the whg stalls; however, 
the  position of E- moves only a small mount below the   t ra i l ing  edge. 

The effects of E body on the flow  behind a wing a t  high angles of 
ettack ere not  well  understood. Sone of the  effects  for low angles of 
sttack  discussed  previously would be expected t o  apply, a t  least quali- 
t a t ive ly ,   to  the high-angle-of-attzck  case. However, the  disphcement 
of the  vortex  sheet, or vortices, f ro3  tne  fuselege m y  be large ard the 
effects  of the body  on the motion of tZle vortex  system  nay  be of impor- 
tance. Viscous effects  would also be eaec ted   t o   be  more important a t  
higk  angles of attack. No experimental  studies have been made t o  determine 

- 



di rec t ly   the   e f fec ts  of e body on the  flow a t  low speeds,  but results of 
t e s t s  a t  supersonic  speeds  reported in reference 24 of wings with  sepa- 
ra t ion   vor t ices   my be  indicative of the body effects  at low speeds. 
These resu l t s  showed the t   the   e f fec t  of the body on %he motion of the wing 
vortices was dependent, OD body s ize  m d  hdicated  the  presence of two 
pairs of vortices  originating  near  the nose and Eear the rear of the  body. 
A sknplified  theoretical   malysis  of the effects  of a body  on the  motions 
of wir?g vortices i s  presented in  reference 41, amd calculations or" the 
downwash behiEd wing-body combinations at, high  angles of a t tack are pre- 
sented  in  reference 42. 

Unswept-wing configurztions of l o w  aspect  ratio.- For unswept wings 
t h e   i n i t i e l  stall m y  occur w h e r e  along  the span,  depending on the  
taper r a t i o .  Consequently, the  ?low in the   v ic in i ty  of the  t a i l  m y  vary 
considerably  for wings of various taper rgt-ios. For hig_'nly tagered wings, 
s t a l l i n g  w i l l  begin a t  t h e   t i p  and the  general  flow ghenomena  would be 
similar to  thet   described for  sweptback wings. For wings w i t h  small 
taper,  separation  begins  nezr the root end the  flow would be expected t o  
be much different  from tha t  behind sweptback w i n g s .  The general char- 
acteristics of the flow behind a wing of smell taper w i l l  be described 
ia this  section. 

The flow  behind a 3.4&.0-.63 w i n g  is sinrikr t o  that described in  
reference  2  for a stalled unswept wing. As denonstrated i n  figure 18, 
the predominant feature or" the  flow is a w i d e  weke heving  considereble 
losses i n  dynamic sressure. The i-nflow in to   t h i s  wake determines t o  a 
great extent  the vertical-downwash vaz ia t ion   for   pos i t iom  c lose   to  the 
wing. Tne large  reduction of the wzke-lnduced downwash resulting from 
increased  longitudinal  distance as shown i n  l i v e  18 is in  accord  with 
the  calculated  trends of reference 3. The  downwash E t  the  center  of t he  
wake b e h i d   t h e  fl-ng-root section is lower than if the wing had not 
s ta l led.  The maximus values of d m m s h  shown i n  figure 19 fo r  a statLon 
about 2 chord lengths  behind  the  trailing edge show the  same trend. 

Body effects  on the  ilom-wssh are significant.  The  downwash ebove 
the  body is increased  considerzbly  (see  fig. 20), and the  variation of 
maximum downwash w i t h  angle of a t tack  is greater thm for  the wing elone 
as shown in figure 19. The angle of attack  for  increased  values of dE/da 
zbove the body apgears t o  be associated with the  onset of a deep  boundary 
layer on the  fuselage. 

Sweptback-Wing Configurations Wikh Stall   Control 

Stall-coatrol  devices have very little ef fec t  on the   whg spw- 
loa6ing due t o  chenges in  angle of ztteck  before the wing stalls end, 
consequently,  can  be  emected t o  have l i t t l e   e f f e c t  on the  var ia t ion of 
downwesh k-ith angle or" at tack ~ th i s  range. 
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Stall-control  devices  can b v e  a considerable  effect on the span- 
. 

load  distribution when the wing is stalled  but the effect  on the wing 
loading ani! flow chmacterist ics  behhd  the wing w i l l  depend on tne  type s 

and arrange-nent of the  flow-control measure epployed.  There is  very 
l i t t l e  information f'rm xhich  the  influence or' stall  devices on the  over- 
a l l  flow cbsac te r f s t i c s  behind a wing can  be determined directly;  there- 
fore,  the  following  discussion of the  effects of various means of stall  
control on the flow characterist ics is based t o  a lmge  extent on the 
influence of stall-control  devices on the separation and l o d i n g  char- 
ac te r i s t ics  of the wing. 

The effect  of leading-edge  flaps,  or slats, on the s t a l l i ng  behavior 
and spm loading  of the wfng depends primarily on the  location of the 
inbomd end of the  device and on the wing plan  fora. For small t o  inter- 
mediate spens (< 0.6b/2),  leading-edge flaps  maintain  the  loading over 
the oizter par t  of the wing and, fo r  a given  angle  of  attack,  cause  sepa- 
rz t ion and the  large droporf of span loading t o  occur  closer to the plane 
of symmetry thm would occur  for  the  plain wing. These results a r e  i l l u s -  
t r a t e d   i n  figure 21  for the 45-8.0-.43 wing of reference 43. The effects  
of leading-edge flaps on -the flow  charracteristics behind a 45-5.L.38 WLng- 
body combination (ref. 44) are  shown in   f igures  22 and 23. The region of 
3igh vort ic i ty  in the wake (for   tnis  wing, the  separation  vortices) are 
located  farther  inboard f o r  the wing with leading-edge flaps than that 
for  the plain wing because of the =ore  inboard  location of the large change 
i n  spanwise  loading. Note the more inward location of the  regions of 
lasge  spmwise downwash gradients and low  dynamic pressure  in  figure 22. 
In  this figure it may also be seen tha t  the  increase i n  aaximm downwash 
as the region of high vort ic i ty  i s  approached is  much less  witin the 
leading-edge f l ap  on the wing. TAe data of f igure 23 show that the veri- 
ation of maxiuum downwash with angle of attack behind the Wioard survey 
s ta t ion 0.16b/2 is practically  unaffected by leading-edge  flaps, whereas 
emX is reduced a t  an ear l ie r  =-@;le 02 at tack behind the outboard sta- 
t i on  0.3=/2. The effects  of leeding-edge f laps  on downwash diuinish 
with increasing  vertical  distance frm the point of maximum downwash. 
This result  could have been anticipated because i r regular i t ies   in  span 
loading have a smller effect  on  downwash as the  distance from the  posi- 
t ion  of maximum downwash is increased. 

T 

If the  span of the f lap  or  slat is long enough, the  discontinuity 
a t  the  end of the   f lap  nay cause the separation t o  spread  mostly  inboard. 
In  th i s  case the flow phenonena should  be similar i n  nany respects   to  t'nose 
described i n  t i e  previous  section  for an unswept w i n g  having  seperated  flow 
ne= the root. The flow angles would be smller but  the  losses in dpmnic 
pressure would be  greater  for  the  configuration with the  stall-control 
device t'nm for  the plain swestback-wing configuration. If full-span 
devices m e  employed, a delay i n  the changes in flow a t  the t a i l  i s  experi- 
enced bui; the  flow char,ges due to  separation  are basically  similar t o  those 
for  wings without  flaps. 

.I - 
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1 The description of the air flow over wings with  partial-span 
leading-edge  chord-extensions in referer-ce 7 indicates  that   the  loading 
over  such configwetions is similar t o  that f o r  wings with leading-edge 
flaps,  except  that  the  loading  over  the  outbomd  sections may not be 
maintained t o  as high an angle of attack.  Therefore,  the  effects of 
chord-exbensions on the  flow at  the t a i l  &re sinilar: to those of leading- 
edge flaps.  

U 

Although the aerodynamic action of fences is  somewhat different,  
effects  on the load dist r ibut ion  are  similar t o  those of leading-edge 
f laps  i n  the,% fences  delay  the loss of l i f t  outboard of the  fence and 
cause eu l l e r   s epa ra t ion   o r  loss of l i f t  inboard of the feme  (see 
ref.  43). All t'mee of the  stall-cor-trol  devices  discussed so far have 
much the sane effect  on the  whg  loeding and, grobably, on the flow 
behind  the wing. 

AS shown in  reference 35, combined c a b e r  and t v i s t  delayed  appre- 
ciably  the  load changes on a 45-8.G.45 wing but had no appreciable  effect 
on the  spawise  location of t'ne ini t ia l   separat ion.  With regard t o  the 
f l o w  a t  the tail, incorporation of c a b e r  and t w i s t  causes a delay  in  the 
flow  changes and possibly a chamge in  the  severity of the  flow  changes. 

Sweptback-Wing Configurations With Trailing-Mge  Flaps 

Flow behind wings and vlng-body  combin&ions with partial-span 
f leps  at a low angle of a t t a c k -  Tne  downwash and dynamic-pressure  char- 
ac te r i s t ics  behind 2 40-4.03 wing (ref. 14) and wing-body combinatioa 
(ref. 45) with partid-span  spli t   f lzps,   respectively,   ere  presented  in 
figures 24 md 25 for  a low angle of attack.  Since  the  mgle of attack 
is  snall, the  absolute  values of downmsh preseDted k figure 24 may be 
considered  as  closely  representing  t'le  effect of deflecting  the  f laps.  
The mxhum downwash behb-d the wing is obtained above the wake center 
l i n e  beceuse of the wake-illduced downwash (ref. 2) and the   e f fec ts  of the 
dis tor t ion of the  vortex  sheet. The Fnfluence of the body on the  detailed 
eir-flow  characteristics i s  par t iculmly  s ignif icar t   new  the wing-body 
juncture. The body reduces the do-kllwash a t  spmwise  stations  near the 
wug-body  juncture,  increases  the downwash a t  outboazd stations,  and 
displaces  the wake near the body  upward (fig. 24). These results may be 
explzined by the  presence of a  strong  vortex which originates  near  the 
wing-body juncture &nd has a direction of rotat ion  opposi te   to   that  of 
t i e   t i p  vortex. (See re f .  46. ) 

No a t t a p t  has been  nade t o  calculate  the downwash due to   def lec t ing  
f laps  beczuse of t h e   W g e  body effects  present for the   practrcal  wimg- 
body case.  Calculations were made, however, to  deternine t i e  dynamic 
pressure and wake dinensions  behind  the wing on the  assmption of a two- 
dimensional wake as b- reference 1 i n  order t o  demonstrate  the  three- . dbnensiond  chmacter of the flow. As shown i n  figure 26, agreement 
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between  dynamic-pressure characterist ics determined from experiment and 
by calculation i s  poor. The wake intensity was lower and the  width was 
much less  at the inboard  station  than that calculated. The differences 
in   the results are  t o  sone extent  attributed t o  the  rolling-up of the 
trailing  vortex  sheet  but are prkmrily et t r ibuted  to   the outward flow 
i n   t h e  wake which occurs on and near the wing because of the large span- 
wise  pressure  gradient  behind the flap. 

Surveys of the  flow behind  sweptback wings and wing-body combinatione 
at various  angles of attack with trailing-edge  flaps  are  presented in 
references 13, 14, 23,  27, 36, 40, 44, 45, and 47. 

Effect of a n a e  of attack on flow  behina winp;-bodg cdbinatfons 
with  trailing-edge flaps.- The changes in the  detailed  flow  character- 
i s t i c s  behind wing-body combinations  with  trailing-edge  flaps as the 
angle of attack i s  fhcrezsed  through the stall are complex,  and the changes 
are  dependent t o  some extent on the t ra i lhg-edge  f lap and stall-control 
arrangement  erqloyed. For the  present  discussion, the flow  behind wFng- 
body combinations employing partial-span  leading-edge and trailing-edge 
f laps  will be described  inasauch as this conbination is the most important 
case. 

ELOW separation and the loss in  lift on various  sections of a flagped 
Q 

wing occur a t  an earlier angle  of  attack  than on en unflepped wing, and 
a t  some high angles of attack the Loading on the two  wing configuretions 
is similar as shown in  reference 43. The downwash of the flapped wing 
will then tend t o  approach that of the &lapped wing a t  a high angle of 
attack. The effects of treiling-edge  flaps on downwash and wake charac- 
t e r i s t i c s  below t h i s  angle of attack are i l l u s t r a t ed   i n  figure 27 for the 
45-5.1-.38 wing-body conbination of reference 4k.  The region of large 
downwash which i s  obtained  behind the  wing flaps a t  the  lowest  angle of 
a t t ack   i n  figure Z7(a) is masked by  flow changes due to separation as the 
angle of attack of the wing is increased, so that at a = 1 9  the  down- 
wash distributions behind  the  flapped and unflapped wings are similar. 
The usward movement of the region of naxinum downwash is, of course, much 
greater  for  the  fhpped wing thzn for  the unflagped wing since the posi- 
t ion  of mximum downwash is  lower  with f laps  on a t  low angles of a t tack 
but approaches the  gosition for the d l a s p e d  wing a t  the  higher angles 
of attack. It may be  seen i n  figure 27(a) that the  ver t ical  downwash 
gradients are larger  behind  the  configuration with trailing-edge  flaps 
a t  the lower  angles of attack. Although the variations  of  the maximum 
do-mwash w i t h  angle of attack  for  individual spanwise stations  are  irreg- 
izler, the variations of maxhm damwash obtained by spanwise integration 
across a typical t a i l  span indicate an increase  in the value  of duds 
when the w i n g  stalls. 

. 
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ANALYSIS OF STABILITY CONTRIBUTION OF HORIZONTAL TAIL 

s 
I n  this analysis of the s tabi l i ty   contr ibut ion of the tail,  cer te in  

aspects of the l i f t  developed by a t a i l  s u f a c e  when placed i n  the flow 
f i e l d  behind  a wing-body co&tnztion w i l l  be discussed first. Next, the 
effective downwzsh obtained a t  the tzi l  as it moves  down w i t h  angle of 
attack through the downwash f i e l d  w i l l  be  analyzed i n  terms of the tai l  
locat ion  re la t ive  to  the chord plane and i n  terms of the t a i l  geometry. 
Then, the  effects of wing plan form, atrfoil   sectioo,  stall-control  devices,  
trail ing-edge  f laps,   proxhity of ground, Reynolds nmiber, and Mach nmiber 
on the  effective downwash characterist ics and tai l  contribution T are 
demonstrated. For t h e   p l a b  sweptback-wing configurations, a nmiber of 
2mportult factors  affectlng the t a i l  contribution are correlated and cori- 
sideration is given t o  methods for  e s t i n a t h g  the t a i l  contribution. 

T a i l  L i f t  Characteristics 

The s tabi l i ty   contr ibut ion of the  horizontal tai l  is determined  by 
the l i f t  on the tail surface an& the  fuselage which results from placing 
the tai l  in   t he  f low f i e l d  of the --body combination. For tails mounted 
a w e y  from the  fuselage,  accurate  values of the l i f t  m y  be  obtebed by 
using  everage  values of loca l  t a i l  angle of a t tack and dynamic pressure, 
which have been  weighted according t o  the additional l i f t  dis t r ibut ion of 
the tail. Satisfactory agreement with  force-test results have been 
obtained Fn some cases by weighting  according to   t he  chord dis t r ibut ion 
(see  regs. 13, 27, and 44). A proven method for  calculating  the l i f t  of 
tai l  surfaces mounted  on the body has not been  developed. An e p p r o x U t e  
method for  calculating  the l i f t  of a l i f t ing   sur face  and bo- combination 
has been suggested An reference 48. This method is extended t o  account 
for  the main wing downwash inasmuch as it m y  prove useful in estimeting 
the lift of a t a i l  in   t he  presence of a body and a whg and in developing 
more adequate  estimation  procedures. The lift of a surface and an infinite 
body at the same angle of &tack a is given in reference 48 as 

m 

L = ?ELexp (1 - 2) 
where 

8 



where Lexp is the l i f t  a t  an  angle of attack a, obtained by joining 
exposed wing panels, Lsmface, the l i f t  a t  an angle of ettack a 
obtained on surface  in presence of bo*, hody ,  the l i f t  a t  an  angle 
of attack a obtajned on body i n  presence of surface, and EB, the 
average body downwash across the exposed t a i l  span. It may be  noted 
tha t  the  parmeter F i s  not  sensit ive  to  the shape of the  load distri- 
bution end may be calculeted by using any reasonable  load  distribution. 
According to  reference lt8, t'ne r a t io  L/Leq is relatively  insensit ive 
to   the  aspect   re t io  of t i e   l i f t ing   sur face .  To the same degree of approx- 
imt ion ,  it would appear that equation (7) can be generalized t o  include 
the  effect  of the wing down-sh as follovs: 

L = FLexp(l - ") da = (1 - d a  da 

where Ew is the average downmsh across exposed te i l  sgen due t o  wing 
and image vortices. 

In  the  analysis of force-test data the i so l a t ed   t a i l  has been con- 
sidered the besic  l if t ing  surface,  and, for  constat   fuselage  angle of 
attack, t:?e r a t io  of the lift-curve  slope of the t a i l  and fuselage  to 
tha t  of the  isolated t a i l  i s  defined as 9. In  practice the isolation 
of t i e  parmeter 7 is -uncertain so tha t  it i s  best t o  use  the param- 

e t e r  as an  indication of the l i f t  characterist ics of the teil. 

Experimental data on 

mounted on the body. The isoleted t e i l  lift-curve  slopes used i n  forming 
t k e  ra t ios   plot ted  in  figwe 28 were obtained by celculat ion  in  sone 
cases and fro= e-erimental deta i n  others. The available  results indi- 

cate e f a i r l y   r e m a r  reduction of q - with increase in body s i z e .  

The variation i s  due mainly t o  the  variation of q. Although q (3) 
aepends t o  some extent on the t a i l  height end body shape, sufficient data 
are not available to   sscer ta in  the effects  of .these parameters. For t a i l  

surTaces m o i u l t e d  fnme0iatel.y adjacent t o  the body, values of q(%)e = 0.94 
hzve beeo measwed in  investigations  reported  in  references 13, 27, and 49. 

4:)e 
are presented i n   f i g m e  28 f o r  t a i l  surfaces 

(?)e 

Q e  

P 

In  the preceding  discussions  the lift curve of the t a i l  was assumed 
t o  be linear; however, pzrticular  at tention should  be  paid to   nonl inear i t ies  



i n  t'ne t e i l  l i f t  curve when using  surfaces  incorgor&ting high s-weep angles, 
low zspect  ratios,  and thb -   a i r fo i l s .  Another factor or' concern is the 
v a i e t i o n  of the  flow mgle  across  the span of the t a i l  es shorn  in  f ig- 
ures 11 t o  13 and 27(a).  This  variation may be suf f ic ien t   to  alter the  
s te l l ing   charac te r i s t ics  of the t a i l  so Chat everage  values of t a i l  angle 
of a t tack 112y not be h d i c a t i v e  of the l i f t  produced by the tail. 

&sic  Results for  Sweptback-Wing Configuratioos 

The horizontal- te i l   contr ibut ion  to   s tabi l i ty  is not  constant  over 
the engle-of-a-ltack  range  prfncipally  because  the downwzsh angle a t  the 
t a i l  vzries  noruniformly  with  angle of attack. The latter result is due 
to   t he   r e l a t ive  movement between the  te i l  and the  posi t ion of n?axinum 
downwesh uld t o  a nonuniform chmge i n  the  general   level of downwash with 
angle  of  attack. 

A deEonstration of how these  factors   affect   the  domwash variations 
et  the t a i l  i s  preseoted  in figure 29 fo r  a condition where the mvement 
of the t a i l  r e l a t i v e   t o  the posit ion of rnaximiun downwash is  lerge. The 
curves were calculated  for a ving-tail  system where the  vortex  system was 
represented by a pair  of inf ini te   vort ices  whose spacing  position 
re le5 ive   to   the  tai l  were  approxl-ted from the  results of reference 36. 
Calculetions were made for   the  case where the  vortex  spscing wes constant 
(fig.  29(a) ) u l d  for  the  case where the  vortices moved inward with 
increasing  angle of attack  (fig.  29(b) ) . It can be seen thak  the  move- 
ment of tin-e t a i l  t'mough the dokmwash field introduces  significant non- 
l i n e a r i t i e s  in the  ver ia t ion of the downwash at the tail even though the 
naxbr.~un downmsh var ies   l ineer ly  w i t h  sngle of attack. The inward move- 
ment of the  vortices w i t h  increasing  angle of attack  accentuates the 
nml ineer i t ies  in downwash obtained a t  the t a i l  but does no t   a l t e r   t he  
trends shown for  a consteslt  vortex  spacing. m-e domwesh velocity for 
.E constant  value of x m d  y i s  

v = f(I ' ,b' ,z') 

where b '  i s  the  vortex  spacing and z! is  the   ve r t i ca l  distance 
between the tei l  and a l i n e  connecting  the  vortex  centers. Then, 

The first two terms on the  right-hand  side we  posit ive and increase i n  
mzgnitude as z '  approaches  zero. The third term  reaches a naxhum 
positive  value when %he t a i l  i s  above t'ne line cormec-ting the  vortex 
centers  (position of m~~imm domwash). This means that, as the  t a i l  
moves  downwerd w i t h  zngle of attack,  de/da  increases  with  angle of 



at tzck until the t a i l  reaches a f in i te   pos i t ion  above the  point of mi- 
mun dom-msh (z' = 0) and that &/da decreases w i t h  angle of attack 
when the t a i l  is below tnis  position. 

Exazples of effective downwash variations  obtained behind real wing- 
body cabinations  reported  in  references 27, 40, end 50 are presented 

i n  figure 30. Corresponding data on  dce/da  snd q (3e are  presented 

in   f i gu re  31. T'e basic  flow  characteristics  for  conf'igurations simile3. 
to   these  have been described  previously. The data in figures 30 and 31 
show tha t  the downwash does not vary  continuously i n  a nonlinear manner 
f roa  m angle of attack of Oo as for  the  configuration  in  figure 29 but 
ratl._er, it varies  l inearly  for  part  of  the  engle-of-attack  range and 
then  varies  nonlinearly  in e manner similar t o  t h a t  of the  configuration  in 
figure 29. For the  configurations in   f igure  30 and for  most other con- 
figurations  discussed in  this report, any nonlinear  effects on downwash 
due to   t he  movement of t h e   t a i l  w i t h  respect  to  the  vortex  sheet o r  due 
t o  the ro l l ing  up of the vortex  sheet  before  separation  occurs  are small 
so Khat the value  of  dee/da  abtained a t  a = Oo is  essentially unchznged 
until separation  occurs. Tne noalinear  variations  of downmsh a t  the t a i l  
w i t h  angle of attack shown in figure 30 are obtained  because, a f t e r  sepa- 
ration  occurs, the maxhwa value of downw&sh increases et a substantially 
greater rate as shown in figure 10 anii the  relative noveraent between the 
tei l  and the point of rmximuu downwash is  large as indicated by the move- 
sen t  of the wing chord l i ne  Fn figure 14. The relative  inportance of 
these  factors in contributing  to  the  nonlinear downwash variakions m y  
change, however, for  different  configurations. The dynamic pressure at 
the t a i l  for  the  configmations or" figure 31 does not  vary  significantly 

Y 
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w i t h  angle of attack  except at high a l e s  of attack, so  that w i l l  
not have any appreciable  effect on the t a i l  contribution as expressed 
by T in  equation (4) over most of' the  angle-of-zttack  range. 

In  the following  discussion which deals with experimental resu l t s  on 
t a i l  location and t a i l  geometry, the  primary  emphsis w i l l  be on the down- 
wash i n  the range of lift coefficients where the  flow  over  the wing is 
separated. The Doints  concerning the downwash variations which are  dis-  
cussed are the direction of the  changes of dee/da, the angles of attack 
wkere t h e s e   c m g e s  occur,  azd  the magnitude of d€e/da. 

Tail  1ocatioE.- As can be  readily  seen  in  figures 29 t o  31, the 
downwash vsriations for mgles of attack beyond the linear par t  of the 
downvash curves are affected  considerebly by the vertical   location of 
the teil. The initisl changes i n  the downwzsh variations  are destabi- 
l izing  for  the  nigh t a i l  positions and s tabi l iz ing  for  the low t a i l  - 
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positions. As  shown in   f igure  31, t h e   i n i t i a l  changes i n  d€&a tend 
t o  occur for  tne  various kil posi t ions  a t  about the same angle of attack. 
Tnis mgle  of attack  corresponds  closely t o  the  Ini-Lial wing s t a l l  angle 
which, f o r  the  low-aspect-ratio wings, is the  angle of &tack where the 
position of maximum downmsh begins t o  move  away f r a n  the wake center   l ine 
but is lover  than the angle of attack where 

For 211 ta i l   gos i t i ons  the megnitude  of  dee/da decreases a t  sone angle 

of attack. The angle of attack  for  decreasing  d€e/da  increases with 
increasing t a i l  height h. FEctors cont r ibu thg   to   the   decrease   in  dee/da 
other  than  the movement of the t a i l  through the downwash f i e l d  as described 
f o r  the  simple  vortex  system in figure 29 are a decrease fn dI'/da m d  
8 decrease of the  average downwash over  the t a i l  s p m  when the  vortex  cores 
or wakes encompass the   t a i l .  

dEd a begins to  increase.  

From the dsta i n  figures 30 m d  31 it may be inferred that there is 
a t a i l  position  near the chord glane which defines a boundaxy below which 
there &re no destabilizing changes of dee/da. Deta on six  configurations 
which r e l a t e  this boundary t o  the wake location  are  given In table  IV. 
Tk?ese data show that t i e  maximum t a i l  height  for which there are no signif-  
i cmt   des tab i l iz ing  changes in de/da is defined  very  well by the dis- 
tance of the wake center from the wing chord plane a t  the  vlgle of 
a t tack al -where d&/da increases.  This  angle of attack is somewhat 
greater t h v l  t he   i n i t i a l   s t s l l i ng   eng le  of the wing. In terms of 2. sig- 
nif icant  wing characterist ic,   the maximum t a i l  height  for no destabil izing 
change i n  de,/da is  defined  approximately by the  web-center  location 
a t  the  angle of attack where unstable changes i n  t'ne ta i l -off  
pitching-nomect  curve m e  obtained. It should  be  noted tht the afore- 
mentioned resul ts  were obtained for configurations where the movement 
between the t a i l  ad the  mke  center had no sieJlificant  effect OD d€e/da 
un t i l   s t a l l i ng  on the wing hzd occurred. The maxim= tail  heights f o r  
no destabilizing  chmge of de/da me plot ted  agabst   the   dis tance f'rm 
the  t r a i l i n g  edge Fn figure 32 and compared with a mean boundary  proposed 
in  reference 51. Because of the  nearly  l ine=  relation between the wake 
displaceaent uld longitudinal  distance from the   t r a i l i ng  edge, straight 
l ines  that are drawn through the  origin and any individual  point w i l l  
define a boundary applicable  to a rmge of tai l  lengths. 

The wimm value of dee/da a t  the t a i l  is important  inasnuch as 
it is  indicative of tine least   contribution t o  s t ab i l f ty  that the tai l  will 
provide. An i l l u s t r a t ion  of the effec-l of t a i l  height on the  maximum 
value of dee/da is shown in  f igure 33. The low angle-of-attack  values of 
dee/da are  also shown.  Above the boundary for no destabil izing change 
i n  dee/da  the maximum value of dee/da  increases w i t h  lhcreasfng t a i l  - 



height t o  a peak value and then  decreases. As shown in figures 29 t o  31 
maximxu values of dee/da are  obtabed  at   progressively higher angles of 
attack w i t h  increasing t a i l  height and that the angle-of-attack  range 
where dee/da is larger than the low angle-of-attack  value of dee/& 
i s  greater as the t a i l  Zeight  is increased. The decrease i n  maximum 
d€e/dct noted in   l igure  33 may be explained as follows. Ln the discus- 
sion of the downwash resu l t s  f o r  a simple  vortex  system it was shown 
that the m x i n m  value of &/du for   the middle point on the te i l  is  
obtained when the t a i l  is passing  through EL point  located somewhat above 
Yne region of naximu;n downwash. Now, if' the t a i l  is above this point 
u n t i l  && dct decreases,  the  resulting  value of de/da at the t a i l  
would be lower  than that obteined with tine t a i l  at a lower position. For 
complete tails located  behina  actual w i n g s ,  the  effective  velue of da 
is decreased a t  2. high angle of attack by a reduction i n  W/da, and a 
decrease of the  average downwash over the t a i l  span when the tail is  
ke r sed   i n   t he   vo r t ex   co res   o r  wake. Inasmuch as these  factors  are influ- 
enced by the  inmrd  progression of separation on the w i n g ,  the t a i l  height 
a t  which the peak value of dce/du is  obtahed  egpears  to be related in - 
sone way to  the  angle of a t tack  for  
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The efTects of chenges i n  t a i l  length on the downwash characterist ics 
behind E. 72.4-2.3-0 wing-body combination  reported i n  reference 50 are 
shown in  f igure 34. The magnitudes and variations of downwash a e  not 
affected much by change i n  t a i l  length  for 2h/b = 0.29, 0.58, and 0.87 
up t o  about u = 15O, but  eppreciable chm-ges &re obtained at higher 
angles of attack. The maximum value of dee/du and the ensuing  decrease 
i n  dee/dcr are  reached a t  a lower angle of at tach es t a i l  length is 
increased. This result can be visualized from a consideration of the 
n;.ovement of the tei ls  through the downwash f i e l d  behind the wing. The 
vzlues of rraxixum dce/da decrease with increase in  ta i l  length  for a 
given teil height as shorn i n  figure 35(a). For 2h/b = -0.07, the vari- 
etions of downwash (fig.  34) are similer altiiough it may be seen  that  the 
downwas'r- vsriation i s  more stEbilizing  for the most rearward t a i l  position. 
For tail positions  close  to  the boundary previously  discussed,  the  type of 
do-mwash variation would be chmged by a change i n  t a i l  length. 

It has been observed that the mFmum values of dEe/da for   the 
32.4-2.3-0 wing-body combination  nay  be correlated Epproxlimately i f  the 
t a i l  location is  given i n  terms of a tangent of an  angle. The results 
of this correlation (where the angle is measured from the chord  plane 
w i t h  the 3/4c f poin-l &s the  origin)  are shown in   f igure 35 (b) . The corre- 
l a t ion  obtained on the basis of equal  tail-location angles h&s sone  theo- 
re t icel   jus t i f icet ion.  Results of calculations of de/&ct where the flov 



- w e s  represented by a horseshoe  vortex show  t'ne sane treod as i n   f i g -  
ure  35(b) when the t a i l  length was rneasured from t'ne origin of t'ne t r a i l i n g  
vortices. The generality of the observed result is not known, but  the 
degree of correlation  obtained would depend on the  choice of the  origin. 
For the  configuration i n  figure 35 setisfactory  correlation i s  not  obtained 
f o r  t a i l  lengths less than 1.44b/2. Tne maximum values of dce/du are 
obtained in the sme angle-of-atteck  rmge  for  equal  teil-location  angles. 

. 

Tail-surface geometry.- When t'ne gossible  effects of the s ~ a n  end 
plan form of the t a i l  on dee/du are considered,  the  spanwise  variations 
of dc/da must be  studied. I n  general,  the downwash in   the  region of 
the t a i l  t i p   c b n g e s  more aver  the  angle-of-attack  range  thso  does  the 
flow a t  the  root. Within %he a r a g e  where the wing flow is unseparated, 
an exception t o  this r e su l t  occurs io that relatively  large  values of 
dc/da are  obtair-ed i n  regions  iumedfately &bove and below the  fuselage 
a s  shown i n  figure 9. The detailed  flow  characteristics a t  vErious tai l  
positions  for  separated f l o w  on the wiag are i l lus t ra ted  Fn figure 36 by 
contours of dc/da. The values of dc/da  tend to  increase -with increases 

- i n  spanwise distance  for high ta i l  positions until the  region of vor t ic i ty  
i s  reeched; t'len the de/da  value w i l l  decrease. As the  angle of a t tack 
i s  increased from e low vdue,   the  flow at  the   t i p  of the t a i l  is affected 

t ip   sec t   ions  . * first, 3r?d for the  higher t3il positions dc/dcz decreases first at  the 

T a i l  plan forms can  be el tered to mke  importent changes i n   t h e  
effective  angle of at tack of the ta i l  i n  the direction  inaicated above; 
however, the magnitude of the  possible changes has not been determined 
direct ly  by experbent. Survey d&ta of references 13, 27, 37, 40, and 44 
nay  be  used to   ob ta i c  an est-te  of this efl'ect f o r  wing-body combinations. 

As suggested in  reference 45, negetive  iiihedrsl of the  t a i l  can be 
employed t o  move t h e   t i p  away from the  region of high  dc/da  into  region 
of low dc/da. and thus  obtain sone increase i n  the  tail contribution. 
The chwge  due to   dihedral  w i l l  obviously depend on the  position of the 
t a i l  re la t ive  t o  the dowmwash field. Azl example of the  advantage of 
incorporating  negative  dihedral is shown i n  figwe 37 for a 40-3.5-.58 wing- 
body coubinetion  with  the  root of the t a i l  located a t  2h/b = 0.28. 

&sic  Results  for Unswept-Wing Configurations 

The variations of ee, q (%)e, and T with  mgle of a t tack   for  

several unsvept-wing-body combinations where sepzration  begins  near  the 
root  ere sho-wn i n  figure 38. The occurrence of nonlinearit ies  in the 
downwash curves of f igure 38(a) f o r  a 5.3-2.5-.63 wing-boCy conbination 
(ref. k g )  appears t o  be associated  primarily w i t h  flow segaration on the - wing as indicated by the   fac t  that preventing  separation  by  the  use of 
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- 
nose  flaps  results  in  approximately  linear  curves  to  nearly  (see 

ref. 52). The  downwash  curves  for  the 5.3-2.5-.63 combination in fig- 
ure 38 indicate an initial  destabilizing  trend  for  the  two  higher  tail 
positions  and a stabilizing  trend  for  the  low  tail  position.  The  factors 
contributing  to  the  nonlinearities in the  downwash  curves  are: 

* 

(1) Movement  of  tail through the  wake.  This  effect may be  stabi- 
lizing or destabilizing  depending  on  the  location  of  the  tail  relative 
to  the  wake  center  line.  (See  figs. 18 and 20. ) 

(2) Reduction  in  downwash  behind  the wing when  the  wing  stalls 
(fig. 19). 

(3) A large  nonlinear  increase  in  de/da  above  the  fuselage  resulting 
from  the  addition of the  fuselage. 

T'e increased  values  of  dc:/dar.  at  the  tail  which  result  from  the  addition 
of a body  are  shown  in  figure 39 f o r  a 3.4-4.0-.63 wing-body  combination. 
The  reduction  in  the  destabilizing  influence of the  body  with  increasing 
spanwise  distance  emphasizes  the  importance of tail span in  determining 
the  tail  contribution.  This  result  was  demonstrated  in  reference 53 for 
a model  which &ti been shown in reference 54 to have  large  increases in 
ds/da  due  to  the  body. 

The magnitude of the loss of  dynamic  pressure  at  the  tail and the 
variation of dynaic pressure  with  angle of attack shown in figure  38(b) 
are  sufficiently  large to be  important in affecting  the  tail  contri- 
bution 7 .  

The  effect of increasing  tail  length on the  downwash  (fig.  38(a)) 
behind a 5.3-2.5-.63 wing-body  combination  appears to be  moderate. 
Increasing  the  aspect  ratio of the  wing from 2.5 to 4.0 reduces  downwash 
significantly.  Part  of  this  effect may be  due  to  the  increased  ratio  of 
tail  span  to  body  diameter  bt/d. 

Additional  data fo r  unswept-wing-body  combinations  without  flaps 
are  presented  in  reference 55 and for  configurations w i t h  the  leading-edge 
and  trailing-edge  flaps in references 49 and 52. 

Effect of Configuration  and  Test  Vsriables 

on  Tail  Contribution 

WinR plan form End  airfoil  section.- In order  to  demonstrate  the 
effects of plan form changes  on  the  downwash  behind  wings  at low angles 
of attack,  calculeted!  values of the  mean  downwash  over  the  tail span from 
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reference 56 are  presented  in  Zigure 40. Tne e f fec ts  of plan-form vari- 
ables on t h e  downwash f o r  a given wing lift coefficient  are shown in f ig-  

* ure  40(a)  in terms of the pa, "meter  - - . The effects  of sweepback 
57.3 dCL 

on the downmsh for  a  given  angle of a t tack  are  shown i n  figure  40(b) in 
terms of the parameter E. For wings of  moderate t o  high aspect   ra t io  

at a  given l i f t  coefficient  (f ig.  40), increashg  the sweepback decreases 
the downwash as a resu l t  of the outward s h i f t  of load. This ef fec t  
becomzs snal ler  as t h e   t a i l  is moved  eway from the  vortex  sheet  (increasing 
h) . A t  a given  angle of attack (fig. 40(b) ), increasing  the sweepback 
causes e. greater  reduction of downwash because of the  accoqanyfng  decrease 
i n  CL. The influence of sweepback on the  average downwash varies w i t h  
t a i l  span because of the  fact   that  the spanwise downhash gradient  near 
the  plane of symmetry (fig. 4(a) ) increases w i t h  sweepback. Because of 
t h i s  result, trends shown by the downwash a t  the plene of symmetry should 
not be assmed  to  be indicative of the trends of the Ioean  downwash. 
Results of calculations  >resented  in  figure 40 (a) t o  determine  effects 

'A=O 

- of other wing-plan-form variables  indicate that Fncreasing  the  asnect 

r a t i o  from k t o  6 reduces  the downwash pmameter - - 
whereas  reducing  the  taper r e t i o  h increases  the  value of - - 
considerably. The trends shown  by the  calculated data axe ver i f ied by 
experimental  data on a  systematic  series of wings in reference 57. 
Although data are not  presented  herein  for wings of smll aspect r a t i o  
with unswept t r a i l i ng  edges, sweepback should  have a smdler ef fec t  on 
dc/dCL than shown i n  f igure 40 because OP the  similari ty of loadings 
on these wings. Changes in   the  wing p h n  form of wing-body combinations 
should hwe  effects  on the downwesh a t  low mgles  of a t tack which e re  
quali tetively similar t o  those  obtained  for wings alone.  Systematic  data 
shoving  such effects,  however, are  not  evailable. 

SA dc 
57.3 dCL 

sl ight ly ,  

%A de 
57.3 dCL 

I n  order t o  demonstrate  the  effects of wing-plan-form variables on 
the downwash characterist ics and t a i l  contribution of wing-body  combi- 
nations a t  both low and high  arsles of gttack, data are  presented  in 
figures 41  t o  44 f o r  selected  configurations which have  geometric char- 
acter is t ics   s imilar  t o  each  other  except  for  the  plan-fom variable i n  
question. A capar i son  of the t a i l  characterist ics of swept-  and  unswept- 
wing-body combinEtions fron  references 13 and 52 .me presented i n   f i g -  
ure 41. Despi te   the   d i ssd i la r i ty   in   the  stalling behw5or  and  air-flow 
charecterist ics f o r  the two configurations,  the tsil s t a b i l i t y  parameter T 
( f ig .   k l (b) )  of the swept- a d  unswept-wing-body conbinations  displays 
similar variztions w i t h  angle of a t t ack   i n  thEt the s t e b i l i t y  parameter 
for  the high a d  intermediate tails decreases   ini t ia l ly  and t h e   s t a b i l i t y  
parameter for  the low t a i l  increases   ini t ia l ly  w i t h  increase in the  angle - 
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- of attack. !These chenges in   the  t a i l  contribution, however, occur at a 
higher  angle of a t tack and the  degree  of the unstable change of the high- 
t a i l  s tabi l i ty   contr ibut ion i s  greater for   the sweptback wing. The latter * 
resu l t  i s  due t o  the  greater downwash of the sweptback wing which reaches 
higher l i f t  coefficients  than  the unswept wing. Although data are  not 
available  to  denonstrate  conclusively  the  effect of wing  sweep on the 
domwash for  plan forms where t i p   s t a l l i n g  is  present  in a l l  cases, a 
coxparison of date for  two configuratiors of aspect  ratio 2 from refer- 
ences 58 snd 59 in   f igure  42 indicztes  thst  increasing  the sweepback 
angle from 370 t o  56O had l i t t l e  effect  on the damwash characterist ics 
up to   t he  maximm angle of st tack  tested.  

d 
The observed effects  of aspect  ratio (refs. 60 and 61) an2 taper 

ra t io   ( refs .  62 and 63)  on  dee/da i n  the stalled  range as shown i n  
figlrres 43 and 44 follow the  trends  abtained a t  low zngles of attack. 

The main effect  of wing a i r fo i l   sec t ion  on the  ta i l   contr ibut ion 
a r i ses  from a change in  the  angle of a t tack of flow  separation and the 
attendant  chnges  in  the  f lov  f ield.  The characterist ics of two 50° 
sweptback-Xing configurations  differing in nose radii (refs. 27 and 13) 
are  conpared i n  figure 43. Tce domwash changes a t  the t a i l  were delayed 
until hi&er angles  of  attack were reached by increasing the nose radii 1 
but  the naximm v a h e s  of dee/da for  intermediate and high tail posi- 
t i o m  were increased. The reason  for  the latter effect  i s  obvious  since 
the   t o t a l  l i f t  and, probably,  stributions of l i f t  a t  a = 28O w e   t h e  
sme.  A s  may be  seen in   t zb le  % and figure 32, the  deley  in  the  angle 
of a t tack of s ta l l  by increasing  the  airfoil  nose  radius  increases  the 
meximum t a i l  height  for no destabilizing change of d@a. Airfoil-  
section  effects similar t o  those  noted for   the 50° swept wings have been 
obtained on 40° swept wings (refs. 60 and 6 3 )  where one of the wings did 
not  efiibit  separation  vortices. The question of whether the type of 
flow  sesaration on the wing w i l l  a f fect   the  t a i l  contribution i s  d i f f i -  
cu l t   t o  answer bemuse  the change in  separation  angle of attack w i l l  be 
large enough t o  mask such effects.  

Although few results are  aveilable a t  present,  the  effects on down- 
wesh of  plan-form and eirfoil-section  modifications produced by leading- 
edge a i r  inlets are 03 considerable  interest.  Tests of a 40-3.5-.58 wir-g- 
body combination indicated  that  large  lesding-edge air in le t s   loca ted   a t  
the wing root  reduced  the  value of dce/da  throughout  the  angle-of-ettack 
range when the t a i l  w a s  located a t  2h/b = 0.28. Inlets of the  type 
approaching a f l w h  i n l e t  gave results about  the same as those of the 
basic wing. These resu l t s  should  not  be  generalized inasmuch as there is 
a possibi l i ty   that  some air in l e t s  pay  produce a destabilizing downwash 
change. 



The measured downwash character is t ics   for  e. large number  of sweptback- 
wing-body combinations of various  plan f o r m  have been summarized i n  
figures 46 and 47. The effective downwash charac te r i s t ics   a t  low angles 
of etteck of 20 wing-body combirations axe plotted  as a function of the 
t a i l  height 2h/b in   f igure 46 i n  four groups according t o  various corn- 
binations of the taper  ratio,   aspect  ratio,  and sweep angle. It has 
been  determined tha t  the magnitude of dEe/da i n  the s t a l l ed  range of 
angles of attack may be correlated, i n  a rough sense, by re la t ing   th i s  
value of d€e/da t o  the low angle-of-attack  value of dEe/da measured 
in  the chord plane. !l%e ratios of these two velaes of dce/da axe 
plotted  against  the  tail-location pe;remeter h/m i n   f i gu re  47 f o r  
18 sweptback-wing configurations. It should  be  noted that f o r  any par- 
ticular  configuration  the dEe/da ratios plot ted  in   f igure 47 were 
measured a t   d i f f e ren t  angles of attack for different  tai l  heights. The 
value of  dfze/da in   the  s ta l led range i s  about three or  four times the 
low angle-of-atteck  value  for  the high ta i l  positions and about 0.50 this 
value f o r  the l o w  ta i l   pos i t ions .  p e  dae/da r a t i o  eppears t o  be depend- 
ent on the  aspect r a t i o  which m y  be a r e su l t  of a d i f fe rence   in   s ta l l ing  
behavior of the wing or  the  inexactness of tail- location parameter h /m 
Cn defining the maxinun! values of dce/da f o r  the  smaller t a i l  lengths. 

Stall-control  devices.- In the discussion on the  basic air-flow 
characterist ics behind  sweptback wings with stall-control  devices, the 
downvmh before  separation had occurred on the wing was shown t o  be unaf- 
fected by stell-control  devices. Furthermore, it w a s  indicated that, i n  
general, some changes in   the flow pstterr-   in the region of maximum down- 
wash angle  are caused by the stall-control  devices  but the change decreases 
as the d is tmce  f r o m  the  position of naximum  downwash angle  increases. 
The effects  of various Iliethods of s t a l l   con t ro l  on the dawnwash and tsil 
stabil i ty  paraueters  are demonstrated ir- figures 48 to 51. In general, 
these  results are consistent with the observations of the flow and show 
that the  various neans which have  been  used t o  imgrove the s t a b i l i t y  of 
the  basic kdng increase  the t a i l  contribution when the wing  is  s t a l l ed  
fo r  tails located  in a re lat ively high position. Only small e f fec ts  are 
obtained when the ta i l  is mounted i n  a low position. 

The effects  of 0.475b/2  leeding-edge f laps  on the stability con%rrf- 
bution of a t a i l  znounted  on the 45-5.L.38 wing-body combination of ref-  
erence 4k are shown in  f igure 48. For the high tail there i s  some reduc- 
t ion i n  the  instability  contributed by the t a i l  a t  tbe  higher angles of 
attack when the  flaps  are added. !Ibis change is caused by the change 
of ?low near  the t i p  of the tail. (See discussion of figure 23 .) For 
the low t a i l  no significant  difference is  noted. Data f o r  45-8.0-.45 
and 5O-2.9-. 63 -dng-body  combinations in  references 61 and 13 indicate 
s o m  slight improvenent due t o  partial-span leading-edge f laps  for m o d e r -  
a t e   t o  high t a i l   l o c e t i o m .  - 
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Incorporation of long-span  (0.723/2)  leading-edge f h g s  on a - 
kO-k.0-.63 wing-body combination  caused separatioa  to occur f i rs t  ne= 
the wing root. The change in  location of separation from the midspan 
location  obtained w i t h  shorter span f laps  caused a reduction i n  the desta- 
b i l iz ing  chznge i n  tke downwzsh variation with angle of a t tack  for  moder- 
a t e  t o  high t a i l  positions. (Conpare f igures   7( i ) ,  7(Z ), and 7 ( m )  with 
figures 7(d),  7(g), a d  7(h), respectively, of reference 60.) 

I 

The improvement. due t o  leading-edge  chord-extensions on the t a i l  
contributixt  of a 40-3.j-.50 wing-body combination i s  denonstrated i n  
f i g m e  k g .  Data on chard-extensions of 40-4.0-.% and 35-3.6-.57 wing- 
body Combinations with re la t ively high ta i ls  lray be found in  references 64 
and 65. 

The effect  of wing fences on the t a i l  contribution of a 40-3.5-.50 
wing-body combinetion is sml le r   than   the   e f fec t  of chord-extension &B 
shown by comparison of  figures 49 and 50. Fences were shown t o  have a 
negligible  effect  on the t a i l  contribiztion of a 45-8.0-.45 wing-body com- 
bination  in  references 61 and 66. 

Combined t w i s t  and caTber were highly  beneficial  to  the t a i l  con- 
t r ibxt ion of a high-aspect-ratio wing configuration  (see  fig. 51). Caber  
and t w i s t  delayed and reduced the unstable changes i n  dE/da for   the  high 1 

tail.  SoEe benefit -was gained for  the  intermediate t a i l  but the benefit 
for  the low t a i l  wes srmll. The methods of stall  control used on a 
45-8.0-.4j wing-body cambination i n  order of increasing  beneficial  effects 
on the t a i l  contriblztion were fences,  leading-edge f lcps,  and combined 
camber .ax% twist. Cmber and twist had no beneficial   effects on the &own- 
wash of a variable-sweep  configuration (A = 20' t o  60°) in  reference 67, 
but this may be due t o  the fac t   tha t  the t a i l  wes nounted i n  B re lat ively 
low position  (average h = 0.10b/2). 

Trailing-edge  flaps.- The incrments of downwash due to   def lect ing 
trailing-edge  fleps on wing-body conbinations ere slmrnnrized i n  figure 52 
i n   t he  forn of a r a t i o  of the measured effective downwash increment t o  

the  Tactor -. This factor was found to  give  satisfactory  correlation X L  
bf 
*b 

of t3e f l ap  spm effect  for  the  calculated downwash angles of wings i n  
reference 1 w3en the  vertical   location of the t a i l  was measured from the 
vortex sheet;. The degree of correlation  indicated  in figure 52 is satis- 

of not  greater then 10'. Tr_e lerger  increments  of downwzsh and the . 
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values of which do not  correlate so w e l l  are  obtained  for low ACL-? 
t a i l  positiorrs  close t o   t h e  weke. Sone differences  exist  between the 
down-ash f ac to r s   fo r   sp l i t   f l aps  and for  higher l i f t  f laps  which extend 
the wing chord. 

The e f fec ts  of trailing-edge  flaps on the t a i l  s t s b i l i t y  parameter 
ar?a the downwesh a t  t'ne te i l  of several  represeatative  configurations 
having wings of 45O sweepback me shown ill figures 53 and 54 fo r  tails 
mounted i n  a high  gosition end a low position,  respectively. A t  low 
angles of a t tack where the downwesh curves  are  linear and the  t a i l  contri-  
bution i s  constant,  trailing-edge flaps have only minor efTects on dce/da 
(or T) f o r  t a i l  positions above the  wing chord  plane.  For tai ls  below 
the wing chord  plane,  the  flaps in  some cases  tead  to  increase  the down- 
wzsh pzraneter dee/dcz et low vlgles of attack; however, no generally 
consistent  behavior is evident from the  available  deta.  If the t a i l  is 
loca ted   in   the   f lap  wake (see  fig. 27 (b) ) , sone loss i n   t h e  t a i l  contri-  
bution would be  obtained. 

T.he in i t i a l   non l inea r i t i e s   i n   t he  downwash curves  like  those shown 
in figures 53 and 54 for  flaps-deflected  configurations are governed by 
the  novement of  the t a i l  through the downwash f i e l d  of the  unstalled wing 
in  addition t o  the changes i n   t h e  downwash f i e l d  arising from flow  sepe- 
rehion on the wing. The fomer   e f fec t  which w a s  generally  unimportmt 
f o r  unstalled  plain wings mey be  strong f o r  tails passing tbough  the  
region of l a r g e   v e r t k a l  downwash gradients  obtained Then trailing-edge 
f lzps   are   def lected  ( f ig .  27 (a) ) ; however, the  effects  of  flow  separation 
are   the  larger .  

The mgnitude of the   s tabi l i ty   contr ibut ion  for  tails located in low 
positions is  increased more negative T or  reduced  dee/da) for moderate 
t o  high  engles of a t tack by deflecting  trail ing-edge  f laps  (see  f ig.  9). 
For tai ls  located  in  hi&  posit ions such as i n  figure 53, the s ignif icant  
e f fec t  of trailing-edge flzps on the tai l  contribution a t  moderate t o  
high angles of s t t ack  i s  tha t   the  ~llaximum unstable value of T is reduced. 
Although no data are presented f o r  configurations  having  the t a i l  mounted 
i n  en intermediate  position,  the downwash changes  (reduced dee/da) due 
to   f l eps   fo r  such  configurations  are  generally  large  after  the t a i l  passes 
through the  region of mximum dam-wash (fig.  27(z)). The increased t a i l  
contribution due to  f leps  obtained  sfter  separatloo  occurs is explained 
par t ly  by the   f ac t   t ha t   t he   vdue  of downwash of flapped  configurations 
ten&  to  zpproach the  value  for  plain-wing  cop3igurations a t  a high  angle 
of atteclr. (m-e angle or" at tack where t h i s  result OCCUTS i s  approxbately 
the  zngle where EL = 0.) For low m d  intermediete t a i l  heights,   part  
of the  increased t a i l  contribution due -Lo f l aps   r e su l t s  from the  increased 

( 
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t a i l  movement re la t ive  to   the  posi t ion of msximan down-+resh and from the 
larger ver t ica l  downwash gradients below the  region of maximum downwash 
( f ig .   27 (4 )  

The mixam t a i l  he ig i t   fo r  no destabil izing chm-ge i n  dee/Ca 
which was discussed  previously  for  plain wing configurations  (Tig.  32) 
is  loxered by deflecting  the  trailing-edge flags. The amount that th is  
boundary i s  lowered is  probably  influenced by the  type of f lep .  Some 
valtzes of the meximum t a i l  height f o r  no destabilizing change i n  dE/da, 
vhich were determined frorn t'ne survey h t a  of references 4k and 27 are  
as follows : 

Winq Without flaps With f laps  

43-5.1-.38 . . . . . . . . 2h/b = 0.13 2h/b = 0.05 (double  slotted) 
50-2.9-.63 . . . . . . . . 2h/b = 0.15 2h/b = 0.10 ( sp l i t )  

Tile cbmges due to   f laps  shown i n   t h i s   t a k l e   a r e   t o  be  expected  since 
the  region of' zraximm downwash is  lowered. The megnitude of the change 
is  influenced, hok-ever, by the flow  behind  the  inboard end of the  f lap.  
mis result m y  be shown by using the dE/da contours of figure 55 for  
the 45-5.1-.38 wing-body coxbinetion With double-slotted  flaps.  In fig- 
ure  55(a)  for  the boundary t a i l  position h = O.O5b/2, the  destabilizing 
effect  of the  outboard  part of the assumed O.37b/2 t a i l  is  conpensated 
f o r  by a s tabi l iz ing  effect  of the  inboard  part of the  assumed tail. The 
large changes of the  local  values of &.e/du w i t h  ver t icz l  an& l a t e r a l  
posit ion  mke it inpossible t o  define  the boundary t e i l  height as s i x p l y  
as was done for  cases  without  flaps. 

Generalizations  concerning  the  iniiluence of t a i l  sgan and taper   ra t io  
fo r  low ta i ls  are CiffictiLt  to make because of the  krge  veriakions of 
E 2nd dc/da in  the  sganvise  direction and the  large  effect  of angle 
of attack on these  parmeters. Force tests seem t o  be  required to   give 
reliable  indications. The large changes of dE/du for  sml l  chenges 
of vertical  distance shown in  f igure 55 indicate  the  use of dihedral in 
the t a i l  will have a lerge  effect  on the t a i l  contribution. For sone 
t a i l  heights it is probable that th i s   e f f ec t  w i l l  be larger for, the  cese 
where flaps  are  deflected  than lor the  case where f laps  are neutral. 

Proxinity of ground. - Few data o r  andyses  are  available on ground 
effects  on the flow a t  the t a i l  of swept-wing airplanes. Flow measure- 
ments  behind an unstalled 40-4.0-.63 wing in the  presence of a groun6 
board (ref .  lb) indicete  the sane general  effects of the ground es dis- 
cussed in  reference 3. These effects  vhich are most pronounced a t  the 
center of the -dog are  a reduced downwash angle, a reduceci wake displace- 
ment, a d  an  unsymmetrical downmsh prof i le  with the mxL=mm downwash 
generally  occurring above the vortex  sheet. 

c 
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The influence of the ground on the dom-wash et the t a i l  of a 
40,4.0-.63 wing-body conbination is  shown i n  figure 56. These data  tekec 
from reference 60 show the  reduced dce/da. associated  with  proximity of 
the ground. I n  addition,  these data indicate  that   for the low t a i l  posi- 
t ions  large  nonlinearit ies  in  the downwash curves  occur  before  the  angle 
of a t tack of flow se aration, which is eppoximetely l 5 O  for   the  wing 
without f laps  a d  13 fo r  the wing w i t h  f laps.  The l a t t e r  result is due 
t o   t h e   h r g e   v e r t i c a l  dovnwash gradients below the wake center   l ine and 
to   the   re la t ive ly   l a rge  movement of the t a i l  with  respect t o   t h e  wake 
center  l ine.  

B 

It should  be  noted that fo r  some airplane  configrrrations  the je t  
w i l l  be  deflected by the ground. This  flow  chsnge w i l l  a f fec t  the trim 
cheracterist ics and Fossibly %he s t a b i l i t y  of  airplenes when the  je t  
exheusts ahead of the t a i l  and vhen the t a i l  is  located i n  the proximity 
of the j e t .  

Reynolds number and Mach number.- The effects  of  Reynolds number 
and K ~ c h  nuuber (within  the  subsonic  range) on the ta i l   cont r ibu t ion  of 
wept-wing  configurations  appear to be primarily  dependent on the   e f fec ts  
of these  test   variables on t h e   t o t a l  l i f t  and load  distribution on the 
wing. The ta i l  contribution =ear an angle  of  attack of 0' w i l l  be very 
l i t t l e   a f f e c t e d  by verietion in Reynolds number except  insofar as it my 
be  affected by a cknge   i n   t he  boundary-layer  flow  over the  fuselage. 
This effect  is of most concern for  contrscting  bodies. The main effect  
of Reynolds number on the t a i l  contribution is f e l t  i n  i ts  effect  on the  
separat ion  chracter is t ics  of the  wing end the  resul t ing flow  changes 
a t  the tail.  For wings w i t h  a i r fo i l   sec t ions  of smll leading-edge radii, 
negligible Reynolds nmber   effects   are   to  be e-ected f o r  Reynolds nun- 
bers  fron  about 1 x lo6 t o  12 x 10 because  of the small observed  chenges 
i n   t h e  wing characterist ics.  Beyond this range the  effects  are unknown 
because of lack of cornperable data on the wi-ne; characteristfcs.  For wings 
w i t h  sections of noderate to   l a rge  nose radii ,   increesing  the Reynolds 
number delays the apsearance of nonlinearit ies in the domwash curves 
(see refs. 68 a d  69) and tends t o  alter the magnitude of dae/da in a 
direction that the  increasing  nose  radcus  has in  f i g m e  47. 

6 

Results  of low-speed tests (hi C 0.25) are gpplicable i n  a qualitative 
sense  over a wide r a g e  of subsonic Mach number, but the extent  to which 
the  quzntitative  results  are  applicable i s  depender-t on the  wbg  section 
and plan Torn. A s  e consequence of the small change in the  spao-loading 
shase with bkch number, the low-speed values  of  deeFCL f o r  unstalled 
sweptback wings and  wing-body combinstions of  references 56, 68, and 70 
were not  greatly changed up t o  E. Mach  number of a t  least 0.9 fo r   aos t  
cases. Values of dse/da  generally  increase wi-th Mmh number in the 
subcri t ical  range  because of the  increase  in  the wing lift-curve  slope. 



Data for  the  stalled  case  indicate t h a T  f i z h  ntm3er changes the magnitude 
of dce/iic, as   in   the  unstalled case, and may chm-ge the  angle of attack 
for  nonlinear domhrash variations. Some representative data showing the . 
effects  of Yac'r nmber on downwash behind stalled wings are  presented 
in  references 71 to 73. In  general,  reducing  the wing thickness and 
increasing  the wing slenderness (low aspect   ra t io  and high sweep) reduce 
the  effects  of Mach nunber at both low and high angles  of  attack. 

Estimation of T a i l  Contribution to   S t ab i l i t y  

The e s t i z t i o n  of the  horizontal- ta i l   contr ibut ion  to   s tabi l i ty   for  
wing-body combinations  purely by theoretical  means is  limited i n  scope 
and of uncertain  accuracy. The nost  reliable  estimate of the t a i l  contri- 
bution i s  one obtained from experinental deta for  a similar configuration. 
There are, however, certain  general results and surxnaries obtained in  the 
present  study which are  useful  in  the  design of e horizontal ta i l .  These 
resu l t s   a re  reviewed in  the  following paragmpkrs from the vie-vpoint of 
es t i ra t ing  the  contr ibut ion  to   s tabi l i ty  of a horizontal t a i l  on a 
sweptback-wing-body combination. 

Low angles of attack;- For low angles of attack, a reasonable e s t i -  
mate of the downwash may be  obtairied from the  experwental data summarized 
il?- figure 46. For t a i l  heights  greater t h n  about  two-thirds the body 
dismeter eway from the body center  line,  the  calculated wing downwesh 
should also be sufficiently  accurate inasmuch as the body-interference 
effects  ere f a i r l y  s w 1 1  and t'ne distance fro= the vortex  sheet is lazge 
eno-a! t o  avoid  the  difficult ies encountered  near  the  vortex  sheet. 

C 

Estimation of the  value of the parameter q - appears t o  be more 

uncertain  than that for downwash because of the small amount of data 

available. For t a i l  surfaces mounted on the  fuselage  the  value of 
'(+)e 

may be  estimated from figure 28. For t a i l s  mounted inmediately  adjacent 

t o  t'se fuselage a value of q - of 0.90 t o  0.9 is recommended. 

High males of attack.- A t  high  angles of attack  the  esthmtion of 
the t a i l  contribution i s  less defini te  than at  low angles of attack,  but 
enough data Ere evailable t o  predict  the  direction of t h e   i n i t i a l  change 
i n  the t z i l  contribution w i t h  angle of attack, the angle of attack where 
t h i s  chmges  occurs, and the magnitude of dee/da when the wing stalls. 

The direction of the chaage in  the  stabil i ty  contribution  with mgle 
of ettack is given by the  relation of the t a i l  t o  the wake center line 

I 

" * L  



a t  the angle of attack when the  destabil izing chenge i n   t h e  wing pitching 
moment or  the  decreese  in  lift-curve  slope  for  the wing occurs. If the 
t a i l  i s  above the wake a t  this  angle or' attack,  the change i n  the t a i l  
contribution i s  destabilizing. !The wake-center location may be deter- 
mined from the theoretical  downwash o r  from the  sinple approx-te formula 
(eq. ( 5 ) )  presented  before. Tne maxinun tstil heigst   for  DO destEbLlizing 
change i n  db/da is  given i n  figure 32 f o r  a number of configurations. 
It may be essumed that the  ini t ia l   s ignif icant   depzrture  of the t a i l  
contribution from that obteined a t  low angles of a t tack w i l l  occur when 
separation first appears on the wing. The mgnitude of dce/da fo r  
angles of a t tack where the flow  over the wing is  seperated may be  approxi- 
mated fron  the  exyerinental data of figure 47 f o r  sweptback-wing-body 
combinations witinout f laps  . 

- 

DESIGN CONSIDEXATIONS OF A TAIL To PROVIDE STATIC STABILITY 

T e i l  Requirements 

- 
For the purpose of the  present  discussion  the  ass-mption is  &e 

that it i s  desirable t o  avoid unstable changes in  and t o  h v e  
a l5near  variation of pitching-mment  coefficient  with aagle of a t tack 
i f  possible. The requirements  of the horizontal t a i l  t o  provide  these 
characterist ics zre inirlereatly  dependent OI? the  pitching-monent  char- 
ac te r i s t ics  of the  -dEg-body combhation  without  the  horizontal tail. 
The general  classes  of  tail-off C, curves  encountered  end the   d i f fe r -  
ences i n  the  required t a i l  characterist ics have  been discussed in  refer- 
ence 7. Quoting  from reference 7 ". . . f o r  8 wing-fuselage  combination 
exhibi t ing  neutral   s tebi l i ty  throughout  the lift range, a t a i l  located 
i n  a f i e ld  of c o n s t a t  de/da  can  provide an adequate a d  constant   s ta t ic  
margin. b e e  case I, f ig .  57 of present peper.] c or e wing-fuselage 
conbbtion  exhibiting  an  zbrupt  decrease i n  s t a b i l i t y  tkrough some par t  
of the l i f t  range, it would be  edvantageous t o  have the t a i l  so locaked 
that dc/da  decreesed  ebruptly a t  the same l i f t  coefffcient a t  which the  
decrease i n   s t a b i l i t y  occurred  for  the wing-fuselage  combinetion. [See 
case 11, f ig .  57 of present peper.] The l inea r i ty  i n  the s t a b i l i t y  elm- 
ac te r i s t i c s  of the  cmplete  configuration would, of course, be dependent 
on the  degree of i n s t ab i l i t y  compemated f o r  by Kne decrease i n  ds/da. 
A thfrd  condition  cen be considered i n  which the wing-fuselage  combination 
exhibits  an  zbrapt  illcrease  in t'ne s t a b i l i t y  through the l i f t  range of 
sizch a nzgnitude as t o  be undesirable. R ta i l  located so 2s t o  experience 
en  abrupt  increase i n  de/da a t  the correspondcng l i f t  coefficient  could 

figurztion. [See case 111, f ig .  57 of present paper.]  Although the. 
.. conceivably  provide l i n e a   s t a b i l i t y   c h a r e c t e r i s t i c s   f o r   t h e  complete con- 
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term  'abrupt1  has  been  used  in  these  illustrations, any gradual  change 
in  the  stability  characteristics of the  wing-fuselage  combination  would 
necessitste  graduzl  changes  in  de/da  et  the  tail.  F'urt'ner,  the  absolute 
values  of  dynainic-pressure  ratios  occurring in tne  wake have been  ignored 
in the  preceding  discussion  inasnuch &s they  only  affect  the  effectiveness 
of the  tail &nd are,  therefore,  only  of  secondary  importance  with  respect 

to dE/da. A l s o  ignored  is  the  term ?@ which  under  certain  condi- 
tiom can have 8 measurable  effect  on  the  tail  contribution  to  the  over- 
all  stability."  Tie  above  discussion  em.hasizes  the  importance  of  the 
angle  of  attack  where  the  tail  Contribution  changes,  but  it  must  be  borne 
in  mind  that  the  ability  to  obtain  the  desired  result  depends on the  tail 
volune . 

L 

aU 

Tail  Locations and Tail  Volumes to Obtain 

Desirable  Stability - 

kswept wings.-  For  conf'igurations  with  thin  unswept  wings,  the  tail- * 
off  pitching-moment  curve  exhibits a large  stabilizing  change  as  in 
case I11 of  figure 57 which may be  followed  by e destabilizing  change. 
The  principal  problem  for  this  case  is t o  avoid  locating  the  tail  where 
it  would  be  ineffective  during  the  destabilizing  part  of  the  tail-off 
curve  without  providing  excessive  stability at lower  angles  of  attack. 
It appears  that so far  as  the  downwash  variations  are  concerned  the  tail 
should  be  moving out of the wake at angles of atteck  where  the  tail-off 
C, curve  is  destabilizing. It is  difficult to generalize  about  deslrable 
tail  locations,  however,  because  of  the  significant  contribution of 

(%)e and possibly 
da 

to the  value of I- (see  eq. 4). 

Unstable  sweptback wings.- For  sweptback-wing-body  combinations 
which  exhibit  destabilizing  pitching-moaent  changes  (case 11, fig. 57), 
the  nost  desirable  tail  location from low-speed  considerations  is a low 
location f o r  which  the  tail  contribution  increases  with  increasing engle 
of  attack.  The  increase in the  tail  stability  parameter T for  the  low 
tail  positions  is  equal  to  about 50 percent of the law angle-of-attack 
value  of  dEe/du  inasmuch  as  the  change  in  dee/da  in going from low 
angles of attack  into  the  stalled  range  is  also  about 50 percent of the 
low  angle-of-attack  value.  The  change  in  the  tail  contribution is, then, 
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It should  be  notea thst for  increasiag wing espect   ra t io   the  unstable  
chenge in   the  pitchb-g-noment  curve becomes greater, but  the  possible 
increese i n  t a i l  coEttribution t o  counteract this unstable change becomes 
s m l l e r  beceuse of the  aspect-ratio  effect on.  dee/da. As a resu l t ,  e 
relatively  large  value of tae  t a i l  volume is needed t o  mfninize the unsta- 
b le   chnges   in   the  moment curves of wings which are only  ;lightly on the 
unstable side of t he   s t ab i l i t y  boundary of  reference 5.  Some experimental 
results that demonstrate t h i s   f a c t  are presented i n  figure 58. 

A disedvmtage of the low ta i l  as compared w i t h  e high ta i l  i s  the  
greater  increase i??- the t a i l  coEtribu-tion et low lift coefficients  obtained 
wher?. going from subsocic t o  supersonic speeds. The c m g e   i n   t h e  teil 
contribution is i?l. the sme direction as the change of s h b i l i t y  of the 
wing-body combination. 

Steble sweptback wings.- Wing-body conbinations which  do not have 
any destabil izing changes i n  pitchingGoment  cheracteristics  through  the 
l i f t  range w i l l  cme under cases I or III (Tig. 57). Considerably more 
freedom in selection of t a i l  locations is availeble f o r  these configu- 
rations than for  copyigurations  with  unstable w i n g s .  For case I the tai l  
could  be  located a t  positions up t o   t h e  boundary t a i l  posit ion shown i n  
figure 32 without  any des t ab i l i zhg  changes in stability, and for  case I11 
the te i l  coula  be  located et higher  positions.  Results  are shown in  f ig-  
ure 59 fo r  two sifiilaz configurations where the t a i l  fs located so that 
the downwash variations are destabilizing. Figure 59(b) shows that the 
t a i l  volume should  not be large i f  strbil i ty is t o  be obtained.  Locating 
the t a i l  i n  a very  high  position where the  velues of dce/da m y  not  be 
excessive d the  angles of at tack f o r  maximum dce/da are high  appears 
to offer   a t t ract ive  solut ions for  obtaining  s tabi l i ty   for   cer te in  air- 
plane  configurations. 

Sweptback wings with  stall-control  devices.-  Incorporation of s t a l l -  
control  devices w i l l  usuzlly ease  the  requirenents of the  horizontal  t a i l  
because of the  improved s t a b i l i t y  of the w i r g .  As a result of t h i s  and 
the improved downwesh chmacter is t ics  behind the  wing, the  range  of  useful 
t a i l  locations is greater or the  possibil i ty of a t ta inM4 the desired stz- 
b i l i ty   charac te r i s t ics  is increased when stall-control  devices .me used. 

The considerations  discussed  for stable plain wings apply t o  the case 
where stall-control  devices  provide  stable pitching-mo?l?ent vaziations. 
Investigations show that corcHgurations  incorporeting wings of 35O t o  40° 
sweegback and aspect  ratios from 3.5 t o  4.0 c u  be miie s table   readi ly  
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by using  stall-control  devices. For these  czses  stable  pitching-mment 
variations m y  be  obtained  for t a i l  heig3ts of the  order  of 0.4b/2. 
(See refs .  60, 63, and 65.) 

Although a completely l inear  pitching-mment  curve was not  obtained, 
the  addition  of  stall-control  aevices  to e. twisted and cambered wing of 
high aspect  ratio produced stzble moment characterist ics  for  the  airplane 
configuration when the  horizontal t a i l  w a s  mounted Fn a low position 
(refs. 40 and 6 0 ) .  For the  configuration  without  stall-control  devices, 
no t a i l  position was f o e  tht would provide stable nonent characterist ics.  

CONCLUSIONS 

Avaihble w i n d - t u n n e l  data on the low-speed horizontal-tail   contri-  
bution t o  the s te t ic   longi tudind  stability of high-speed airslane con- 
figuratiocs  incorporating unswept and sweptback w i n g s  ere  reviewed  and 
analyzed. From these data, the Tollowing conclusions were drawn: 

1. For the pu-rpose of generalizing results on  downwash and roll ing- 
up of the   t ra i l tag   vor texshee t  behind unstalled surfaces  suitable  for 
high-speed flight, wings are  classified  according t o  the sweeg oIp the 
t r a i l i n g  edge and the sh&Fe of  the  span-loading  curve. 

(a) For msweqt or sweptback wings having unswept t r a i l i n g  edges 
and nearly  ell iptical   loadings,   the shape and the motion of the   t ra i l ing  
vortex  sheet i s  considered t o  be satisfactorily  detemined by previous 
theoretical  analyses of the development of t'ne trail ing  vortex system. 
L imi t s  of the  &pplicebili ty of the  displaced-flat-sheet  representation 
of the  vortex system for  calculating down-wash are  discussed. Agreement 
between expertslental and calculated downwssh for  same  low-aspect-ratio 
sweptback wings i s  good a t  low .zngles of a t tack when this  representation 
is  used. 

(b) For sweptback wings having swegtback t r a i l i ng  edges md 
loadings which are  uniforn o r  reduced  near  the  plme  of symnetry, the 
s k p e  of the vortex  sheet a t  normel ta i l   loca t ions  i s  characterized by 
a srnaller verticel  displacenent a t  the wing center  then that for   s ta t ions 
far ther  outboard. This resu l t  is a t t r ibu ted   to   the  snaller downwash near 
the center and the  difference  in   ver t ical   posi t ion of the trailing edge 
a t  various  spanwise  stations. The r a t e  of rolling-in of the   t ip   vor t ices  
for  these wings is small compcred with  that   for wings with unswept t r a i l i ng  
edges.  Fair  agreexent between experinental and calculated downwash was 
obtaired  for sweptback wings with sweptback t r a i l i ng  edges. Sweepback 
c&uses a considerable  reduction i n  the downwash a t  e given l i f t   c o e f f i c i e n t  
o r  vlgle of a t tack   for   msta l led  wings of mderete  aspect  ratio and tager. 
There is  a corresponding  increase of the movement between the wake end t a i l  
with  ircreasing sweepback angle. - 

a 
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2. The effects  of 2. fuselage on the doTnwash a t  low mgles  of a t tzck 
have  been mdlyzed  by u s h g  a s inql i f ied  theoret ical  model. A conpaison 
of t i eo re t i ca l  m d  l i n i t e d  experimental downwash results on wi_ng-body 
combinations fs considered  inconclusive. For the coxperison made the 
e w e r d e n t a l  flow ne= the body was more uniform then theory  indicated. 
Additioml  studies of the flow  behina wiog-body configurations are needed. 

3. The m z x h w n  value  of  dom-ash in regions  occupied by a t a i l  
increases  with  angle of attack a t  a greater rate when a s-weptback w i n g  
stalls. Duing   s ta l l ing   the  dowmwesh prof i le  becomes unsymnetrical  ebout 
the wake center  l ine,  and et high angles of  a t tack  the meximun downwash 
is obtained dong  the  horizolltal  line  connecting  the  regions of hi& 
vort ic i ty  which me shed a t  the edge of the unseperated-flow  region. A 
comparison betueen  the  dommsh  obtained frcm experiment axd from celcu- 
la t ions based  on the  experimental  load  distribution  illdicetes  thzt  the 
f low Tield  behad a stalled 60° del ta  wing is reesonably  approximated by 
a single swept horseshoe  vortex. For s ta l led  wings of lover sweepback 
uld higber  aspect  ratio,  neither  the  single  horseshoe  vortex  nor  multiple 
vortices  distributed  according  to the span  loading me a sat isfactory 
approxination of the  actual flow. 

4. The trend  of the rionlb-ear  verfations of downwash with  mgle of 
attack  obtained  with  the t a i l  a t  various  heights i s  def3ned by the  rela- 
t i v e  movement between the t a i l  and the point of msximum downwash in the  
f low f ie ld .  The chmge i n  the  magnitude  of  donwash  behind a sveptbeck 
wiEg because of wing s ta l l  increeses the nonl inezr i t ies   in  the downwash 
curves. The aitiel changes in the  slope of the downwash curves which 
occur inmost  cases when separation f i rs t  appears on the wing are  
des teb i l iz ing   for   h ighta i l   pos i t ions  md stabi l iz ing  for  low t a i l  posi- 
tions. The maxinun t a i l  height in the  vicini ty  of the wing-chord plene 
below vhich  there is no destabil izing change i n   t h e  downwash curve i s  
defined by the distmce oi the wcke center   l ine from the wing-chord plane 
a t  the  mgle of a t tack where the  nriz-bion of lnexinurn domwash angle  with 
mgle  of attack 
curve  indicates a destebil izing change. The maximum value of the  var i -  
a t ion of the  effective downwash angle with angle of a t tack dce/da a t  
the t a i l  generally  increases w i t h  increase of tei l  height and reaches a 
naximrcn a t  a t a i l  height which agpears t o  be   re la ted   to  the angle of 
a t tack  for  m~~imm l i f t  coefficieat  C The maxj.m~~~ values of dee/da 

for  tails located a t  various  longitudinal  distances  behind a 60° deltz 
wing collr"iguration co-iLd be  correlated when the t a i l  location w a s  given 
in terns of an angle formed by tne wing-chord l i ne  an& a line drawn from 
Krle point of the wing three-qmrter mean aerodynenic  chord t o   t h e  tail. 
As a resu l t  of the  large  variation of d.s/da in  the  spmwise  direction, 
changes i n  t a i l  surface geometry offer a means of making inportant changes 
i n  horizontal-tail  contribution when the  whg is  s ta l led.  

d E = P a  
increases  or where the tail-off  pitching-mment 

& a x *  



44 - NACA RM L55E23a 

5.  Lack of systenatic data prevents  en  accu-rete  eveluetion of the 
effect  of sweep OE the %il contribution  for stalleci configurations. 
Eowever, the  varietions of the t a i l  contribution  with  angle of a t tack 
f o r  t h in  low-sspect-ratio  wbgs of 0' m d  SOo sweesback are demonstrated 
t o  be queLitatively similar despite  the  difrerences  in  wing-stalling 
and eir-flow  characteristics  behind  the wfng. Tfie ta i l  contribution f o r  
the SweptbaCk  wing w e 6  lower  than that for   the unswept wing for  high t a i l  
positions. 

6 .  The various  stall-control  devices which have  been  used t o   h s r o v e  
the   s tab i l i ty  of Yne baskc wing et  high  angles of attack  increase  the 
t a i l  contribution et  t'r-ese angles of attzck when t h e   t a i l  i s  loca ted   in  
a relat ively high position  but these devices have no significant  effect  
when t9-e t a i l  i s  located ir? a low position. 

7. Deflecting  trailing-edge  flaps  generelly bas  l i t t l e   e f f e c t  on 
the ki.1 contribution at low angles of attack  except  for  tai l   posit ions 
below the xi-ng-chord plme where the t a i l  contribution was reduced i n  
soxe cases. For  tk-e stalled-wing  condltion,  flaps  increase the tei l  
contribution r'or l o w  t a i l s  and decrease  the rneximum unstable tail con- 
t r ibut ion for high tails. The naxjlnum ta i l  heigbt r'or no destabil izing 
cnange i n  ds/da vas lowered by deflecting f laps ,  and the  mount  that 
it was bwered yes influenced t o  a W g e  extent by favorable downwash 
variations  near t'ne inboard end of the f laF. 

8. Qan t i t a t ive  rules for  predicting  the t a i l  contribution were not 
obtained; however, it has been possible t o  s m ~ r i z e  some quantitative 
data which are   useful   in   es t inat ing tine t a i l  contribution. The data are: 

(a) The effective downwash characterist ics of 19 wing-body corn- 
binetions for wiseparated and separated  flow  conditions. (For the   l a t t e r  
case a reasamble  comelatian w e s  obtained by assuming tht  dee/& during 
s t a l l i ng  for any t e i l  position was proportional  to the low angle-of-attack 
velue of dEe/da measured i n  the wing-chord plane.) 

(b) Values of the ta i l  l i f t  permeter q() for  t a t1  sur- 
e 

faces mounted on a d  detached frml  bodies. 

(c) Teil-height boundaries f o r  six wing-body conbinatlons below 
which tiere me EO significant  destabilizing changes of de/da with  angle 
of attack. 
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(a) Wake displacemenks. 

Lvlgley  Aeronautical  Laboratory, 
National  Advisory  Comaittee for Aeromutics, 

LmgLey Field, Ve., May 11, 1955. 
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(a) Wings with unswept t r a i l i n g  edges. 

(b) Sweptbeck wi-ngs with  sweptback trailing edges. 

Figure 1.- Schematic representation of trailing vortex sheet behind wings. 



.5 

.4 

.3 

.2 

.I 

0 

0 Experimental 
Calculated 

Experimntal Calculated 2 b f b  
0 
0 " 

I I 

0 -2 .4 .6 .8 LO 0 .2 .4 .6 .8 LO 

(a) 36.8-2.3-.22; 22/b = 1.37. (b) 36.8-3.0-.14. 

Figure 2. - Comparison of experimental and calculated downwash behind 
unstalled low-aspect-ratio sweptback wings. Reference 18. 

I Q # 4 



0 
0 

/.U 

/.4 

.8 1.0 .8 LO -8 1.0 

2y / b  ZjJb 2y/b 

( 4  35-5.1-.= 50; (b) 40-4.0-. 63; (c) 60.8-3.5-. 25; 

m ~ z m  - - = 0.078; %E CL 
CL = 0.47; n;a~i- CL = 0.97; maxi- % = 0.50; -1- 

mum - - - 0.042; 
reference 22. reference 14. reference 21. 

?l!E CL - rm~m - ?PE - cL = 0.107; * b A  b A  b A  

- Figure 3.- Experimental  positions of the tip  vortex  behind  three sweptback 
w5ngs with unseparated flow. 



.8 

.6 

- der 
da: 

.4 

.2 

0 
0 .2 .4 .6 

2 y l b  

< Q b 

.2 

0 
- 2*T€ 

b 
-. 2 

- .4 

-6 

- Experimental "- Calculated 
" Calculated (neglecting negative 

vort ic i ty   a t  inboard sections) 

0 4 8 

6, deg 

0 4 8 

6, dep 

(a) &/du ai;  vortex-sheet  center (b) Downwash profiles; CL = 0.81; 
line agni.nst Q / b .  u = 13.1O. 

Fibwe It. - Comparison of experimental and calculated downwash behind an 
unstalled 4O-It.0-.63 w5ng having NACA 641-112 airfoil sections nor- 
mal to the 0.273 chord line. 2xo/b = 1.04; reference 14. 
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Figure 6.- Effect of wing sweep on wake location in linear  lift-coefficient 
ra,rlge. A = 3 to 4; = 0.25. 
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Figure 10. - Experimental maximum downwash, load dist-ribution, and 
pitching-moment  characteristics f o r  three sweptback winp;s. 
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(b) lt5-3.5". 50 wing having 10-percent-thick  circular-arc  airfoil  sec- 
t ions  normal to line of maximum  thickness. R = 4.3 x 106; reference 23. 

Figure 10. - Continued. 



e4 

/. 6 

.8 

0 

.4 

.3 

.2 

cm 
.I  

0 

-.I 

(c) 45-8.0-. 45 wing-body combination  incorporating a 12-percent-thick 
wing with twist and camber. R = 4.0 = 106; references 35 and 40. 

Figure 10. - Concluded. 
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Figure 11. - Flow c:hracteristics behind a stalled 60° delta 52.4-2.3-0 
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wing kr2ving 10-gercent-thick  circular-arc airfoil sections. 
R = 6.0 x 106; reference 36. 
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Figure 11. - Coztinued. 
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Figure 11.- Continued. 



NACA m ~533239. 

\/ectc- sese, d e g  
0 :c 20 
Y- 

r .  .'I 

"_"""""" -1 

w 
0 

5 =  

0 -  
U 

Figure 11.- Concluded. 



L 

1.1 

Downwash and sidewosh ongles. Vectors denote deviation of airflow from free-streom d i r e c t i ~ n ’ ~ ~  
in degrees. 

I 
I 

>Colwlated vortex 
L p o S l f . 3 f l  
I 
I 

I I I ! ,  I I I I I I I 

1.0 .9 .8 .? .6 .5 .4 .3 .2 I 0 
Lateral distance from plane of symmatry,2y/b 
Contours  of dynomic-pressure ratio, qt/q 

Figure 12.- Flov chzracter is t ics  behind a stalled 45-3.5-.50 wing heving 
10-percent-thick  circular-arc airr’oil  sections. a. = 1k.00; CL = 0.69; 
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Figure 1k.- Downwash profiles a t  several  engles of ettack behind f o u r  
sweptback wings. 
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hexagonal airfoil sections; 2xo/b = 1.63; R = 11.3 x 106; unpublished 
data from Iangley 19-fooL; pressure tunnel. 
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- Figdre 20.- Downwash end Qnamic-pressure ratio  profiles  behind a s t a l l ed  
3.&-k.O-.63 wing m d  wing-body combination. Wing has 6-percent-thick 
hexegonel a i r fo i l   sec t ions ;  a = 16.9; = 1.63; R = 4.3 x 106; 
unpublished dzta from Laagley 19-foot pressure tamel. 
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Figure 20.- Concluded. 
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Figure 21.- Effect of leading-edge f k p s  OD the  experimental  load  distri- 
bution of a  stalled 45-8.0-.45 wing. The  wing had NACA 63,~012 airfoi l  
sections. a = 20.8'; R = 4.0 x 106; reference 43. 
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Figure 23.- Effect of  leading-edge flaps on the  variation of with 
angle of attack a t  two spmwise  survey stations fo r  a 43-3. L.38 wing-  
body combination. The wing had NACA 64.-210 airfoil sections normal t o  
the 0.286 chord line. &o/b = 0.88; R = 6.0 x 106; reference 44. 
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Figuxe 25.- Contours or" dyoamic-pressure ratio (qi;/q) behind a flapped 

40-4.0-.63 wing with and without a body. 0.3/2 treiling-edge s p l i t  
flaps deflected 60°; O.575b/2 leeding-edge flaps; 2xo/b = 1.02; 
a = 3.6O; ~i = 6.8 X 10 6 . 
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Figure 26.- Comparison between experimental and calculated dynamic- 
pressne ckracterist ics behid s 40-4.0-.63 wing w i t 3  0.5b/2 split 
flaps del’lected 60°. a = 3.6’; R = 6.8 x 106. 
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(a) Downwash. 

Figure 27.- Effects of trailing-edge flaps deflected wo on the domwash 
and wake chzracteristics of a 45.1-5.L.38 wing-body combination with 
0.4750/2 leading-edge flaps. The wing  had BACA 64-210 airfoil   sections 
n o m 1  t o  0.286 wing chord line. 2xo/b = 0.88; R = 6.0 x 106; 
reTerence 44. 
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29.- Calculate& downwash et ta i l  due t o  a pzir of vort ices .  
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Figure 30. - Effective downwash for  three sweptback wing-body conibinations. 
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Figure 33.. - Values of and d+/da f o r  three sweptback wing-body combinations. 
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Figure 33.- Illustration  showing t5e vaiation of de,/da with tail 
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Figure 311.- Effect of' tail length on the effective downwash characterist ics 
a% a 32.4-2.3-0 wing-body combination wi-Lh the t a i l  at various heights. 

The wing had modified NACA 65(6)-006.3 a l r fo i l  sections. R = 2.06 x loh; 
reference 50. 
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Figure 35. - Effect of tail length on the maximum value of d€e/da for 
a 52.8-2.3-0 wing-body combinai;.ion. The wing has modified NACA 
63(06)-006.5 airfoil. sections. R = 2.06 x 106; reference 50. 
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F i g z e  36.- Cogtours of &/da behind a s t z l l ed  5C-2.9-.63 wing-body 
combination incorporetfng NACA 6k1-112 a i r f o i l  sections nom1 to 
0.282 c5ord line. a, = 210; 2xo/'o = 1.17; R = 6.0 X lo6; a for 
C h  = 25.6'; reference 27. 
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Figure 37.- Effect of t a i l  dihedral on the  s tebi l t ty  parameter T end 
the effective downwash of a 40-3.5-.58  wing-body cornbination. The 
wing had NACA 64AOlO airfoil   sections normal t o  the 0.25 chord line. 
22/b = 1.20; a, lor C h  = 200; R = 9.0 x lo6; unpublished deta 
from Langley 19-foot pressure  tunnel. 
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Figure 38.- Effective  downwash E ~ ,  (2) , and stability  parameter T 

fo r  several unswept wing-body combinations. e Wings have 6-percent- 

thick  hexagonal  airfoil  sections.' R % 6.2 x 106 to 7.6 x 106. 
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Figure 39.- VariatFons with angle or' attack of the downmsh et several 
spanwise  ststions  bebizd  a 3.4-4.0-.63 wing with and  without  a body. 
The wing has 6-percent-thick  hexagonal  airfoil  sections. -/b = 1.63; 
a, f o r  C w  = 14.6"; R = 4.3 x lo6; mpiblished data from Langley 
19-foot  pressure t .mel .  - 
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Figure 40.- EfT'ect of g h - f o m  variables on the calculeted ving downwash 
at low angles of attack. Referenee 56. 
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Figure 41.- Effect of varlation of wing  sweep from 5' to 500 on €e, 

~(2)~. and T of wlng-body combinations with the  horizontal tails 

nt several  vertical  positions. 
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a t  several vertical positions. 

I I 

I 

m L 

". 



f 

T O  

-1 

n ~srarenco 

11.0 x lo6 61 
6.H x loh 60 

0 IO 20 30 0 IO 20 32 0 IO 20 
cJ deg a J  deg 

Figure 4.3.- Effect of wing aspect  ratio on €e and T of sweptback 
wing-body combinations with the horizontal. tails at several  vertical 
positions. 
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Figure 44..- E f f e c t  of wing taper   ra t io  on Ee of sweptback wing-body 
combinations with the h r i z o n t a l  tails a t  several vertical positions. 
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Figure 45.- Compaxison of the effect  of wing airfoi l   sect ion on E= and 

T of sweptback-wing-body combinations with the horizontal tails a t  
several  vertical  positions. 
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A = 370 to so. A = 45'. 

Figure 4.6.- Swnmary of downwash characteris-Lics f o r  wing-body combinations 
at low angles of attack. Flagged symbols indicate tail intersects  body. 
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Figure 47.- S-m of dc,/dcl in the  stalled  range of lift coefficients 
for  various sweptback wing-fuselage co&inetions. 
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Figure 43.- x f e c t  of wing leedbg-edge flaps on E e  and T of a . 
k5-5.1.-.38 wing-body confbination with tlze horizontal t a i l  st two 
vertical   2osit ions.  The wing bas EACA 64-210 afrfci l   sect ions nar- 
mal t o  the 0.286 chord l ine;  22Jb = 0.93; bt/b = 0.363; R = 6.0 x 106; 
reference 44. 
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Figure 49.- Effect of wing leadfng-edge  chord  extensions on the stability 
parameter T of a 40-3.5.58 wing-body conkination. The wing  had 
NACA 64~010 airfoil sectiom nomi l  to 0.25 chord  line; 2hfb = 0.28; 
22/b = 1.20; bt/b = 0.424; R = 9.0 x lo6; ungublished h t e  from  Langley 
19-foot pressure  tunnel. 
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Figure gC.- Effect of wing fences on the stability parmeter -r of a 
40-3.5-.35 wing-Sody combinatiolz. The wing had GACA 64AOlO airfoil 
sections normal t o  0.25 chord l ine;  2h/b = 0.28; 22/b = 1.20; 

btb = 0.424; R = 9.0 x lo6; unpublished data fron Langley 19-Toot 
pressure tumel. 
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Figure 31.- Effects of wing twist and camber  on E~ and T of a 
11.5-8.0-.45 wing-body conhination  with  the  horizontal t a i l  a t  several 
vertical   posit ions.  The wings had NACA 63~x12 airfoil sections. 
22/b = 0.77; b t /b  = 0.28; R = b.0 X 106’. 
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Figure 52.- flumnary of data on downwash due to trailing-edge flaps on 
wing-body conibinntions. u = 00. 
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(e) 45-5.~38 wing with L.E. (b) 45-8.O-.45 Wing With L.E. 
flaps; 2h/b = 0.38; 22/b = 0.93; flaps end feaces; 2h/b = 0.30; 
R = 6.0 x 1-06; reference 44. 22/b = 0.77; R = 4.0 x lo6; 

reference 61. 

Figure 53.- Effect of trailing-edge f h p s  on and T for  several 
45O sweptback-wing-body conibinetions with the horizor?tal tail mounted 
i n  a high  position. 
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Figure 54. - Effect of trailing-edge flaps on and T for several 45O sweptback-wing-body x! 
conibinations with the  horizontal t a i l  mounted i n  a law position. w 
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Figure 55. - Contours &/da behind a 11.5-5.1- .38 wing-body cordbination 
with 0. bb/2  double slotted flaps. The wing had NACA 64-210 a i r f o i l  
sections normal to   t he  0.286 wing chord l ine.  O.k75b/2 leading-edge 
flaps; 2xo/b = 0.88; R = 6.0 x lo6; separation on wing occurs In i t i a l ly  
a t  a = 110; a for C& = 190; reference 44. 
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Figure 56.- Effect of ground on the downwash a t  s e v e r d  t a i l  heights 
beund  40-4.0-. 63 wing-body conbination with and without f h p s .  
Tne wing was i n  a low position and -bad K4CA 641 - -112 a i r fo i l  sections 
noma1 t o  the 0.273 chord l ine.  The ground distance was 0.92~’ meas- 
ured from quarter-chord point of ving mean aerodynamic  chord t o  ground 
boeyd. 22/b = 1.018; R = 6.8 x 106; reference 60. 
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Figure 57.- An idealized  i l lustration of the :Lmprovement made in   the  
pitching-moment chmacterisi;ics of wp ica l  wing-body combinations by 
the use of a horizontal t a i l  operating i n  the downwash f ie ld  behind 
a sweptback wing. 
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(a) 40-4-.63; V = 0.32; (b) 45-4.5-.25; V = 0.584; 
2h/b = -0.06; 2 2 1 D  = 1.0; 2h/b = 0; 22/b = 1.17; 
center of gravity a t   C . 2 5 ~  '; center of gravity et 0.45;; 
reference 60. reference 78. 

Figure 38.- El'fect of a horizontal kil on the pitching-momnt  character- 
i s t i c s  of  configurations having unstable sweptback wings. 
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(a) 36.8-2.3-.25; V = 0.193; 
2h/b = 0.23; 2Z/b = 1.36; cen- 
t e r  of gravity a t  0.525 wing- 
root chord; reference 18. 
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(b) 36.9-2.0-.33; V = 0.383; 
2h/b = 0.27; 22/b = 1.85; cen- 
t e r  of gravity at 0 .37~ ' ;  
refereme 59. 

Figure 59.- Effect of a horizon-Lal t a i l  on the pitching-moment character- 
iskics of configurations havFng stable sweptback  wings. 
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